Upload folder using huggingface_hub
Browse files- app/content.py +0 -1
- app/draw_diagram.py +25 -83
- app/pages.py +232 -235
- app/summarization.py +24 -14
app/content.py
CHANGED
|
@@ -151,7 +151,6 @@ dataset_diaplay_information = {
|
|
| 151 |
|
| 152 |
metrics_info = {
|
| 153 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
| 154 |
-
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 155 |
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 156 |
'meteor' : 'METEOR Score. The higher, the better.',
|
| 157 |
'bleu' : 'BLEU Score. The higher, the better.',
|
|
|
|
| 151 |
|
| 152 |
metrics_info = {
|
| 153 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
|
|
|
| 154 |
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 155 |
'meteor' : 'METEOR Score. The higher, the better.',
|
| 156 |
'bleu' : 'BLEU Score. The higher, the better.',
|
app/draw_diagram.py
CHANGED
|
@@ -15,56 +15,14 @@ info_df = get_dataframe()
|
|
| 15 |
|
| 16 |
def draw_table(dataset_displayname, metrics):
|
| 17 |
|
| 18 |
-
dataset_nickname = displayname2datasetname[dataset_displayname]
|
| 19 |
-
|
| 20 |
with open('organize_model_results.json', 'r') as f:
|
| 21 |
organize_model_results = json.load(f)
|
| 22 |
|
|
|
|
| 23 |
model_results = organize_model_results[dataset_nickname][metrics]
|
| 24 |
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 25 |
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
| 26 |
|
| 27 |
-
|
| 28 |
-
# folder = f"./results_organized/{metrics}/"
|
| 29 |
-
|
| 30 |
-
# # Load the results from CSV
|
| 31 |
-
# data_path = f'{folder}/{category_name.lower()}.csv'
|
| 32 |
-
# chart_data = pd.read_csv(data_path).round(3)
|
| 33 |
-
|
| 34 |
-
# dataset_name = displayname2datasetname[displayname]
|
| 35 |
-
# chart_data = chart_data[['Model', dataset_name]]
|
| 36 |
-
|
| 37 |
-
# # Rename to proper display name
|
| 38 |
-
# chart_data = chart_data.rename(columns=datasetname2diaplayname)
|
| 39 |
-
|
| 40 |
-
# st.markdown("""
|
| 41 |
-
# <style>
|
| 42 |
-
# .stMultiSelect [data-baseweb=select] span {
|
| 43 |
-
# max-width: 800px;
|
| 44 |
-
# font-size: 0.9rem;
|
| 45 |
-
# background-color: #3C6478 !important; /* Background color for selected items */
|
| 46 |
-
# color: white; /* Change text color */
|
| 47 |
-
# back
|
| 48 |
-
# }
|
| 49 |
-
# </style>
|
| 50 |
-
# """, unsafe_allow_html=True)
|
| 51 |
-
|
| 52 |
-
# # remap model names
|
| 53 |
-
# display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 54 |
-
# chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# models = st.multiselect("Please choose the model",
|
| 58 |
-
# sorted(chart_data['model_show'].tolist()),
|
| 59 |
-
# default = sorted(chart_data['model_show'].tolist()),
|
| 60 |
-
# )
|
| 61 |
-
|
| 62 |
-
# chart_data = chart_data[chart_data['model_show'].isin(models)]
|
| 63 |
-
# chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0)
|
| 64 |
-
|
| 65 |
-
# if len(chart_data) == 0: return
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 70 |
'''
|
|
@@ -73,23 +31,13 @@ def draw_table(dataset_displayname, metrics):
|
|
| 73 |
with st.container():
|
| 74 |
st.markdown('##### TABLE')
|
| 75 |
|
| 76 |
-
model_link_mapping
|
| 77 |
-
|
| 78 |
-
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname])
|
| 79 |
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping)
|
| 80 |
|
| 81 |
-
# chart_data['model_link'] = chart_data['model_show'].map(model_link)
|
| 82 |
-
|
| 83 |
-
# chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
|
| 84 |
-
|
| 85 |
-
# Format numeric columns to 2 decimal places
|
| 86 |
-
#chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
| 87 |
-
# dataset_name = chart_data_table.columns[1]
|
| 88 |
-
|
| 89 |
-
|
| 90 |
def highlight_first_element(x):
|
| 91 |
# Create a DataFrame with the same shape as the input
|
| 92 |
-
df_style
|
| 93 |
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
|
| 94 |
return df_style
|
| 95 |
|
|
@@ -126,40 +74,39 @@ def draw_table(dataset_displayname, metrics):
|
|
| 126 |
]:
|
| 127 |
|
| 128 |
chart_data_table = chart_data_table.sort_values(
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
else:
|
| 133 |
chart_data_table = chart_data_table.sort_values(
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
styled_df = chart_data_table.style.format(
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
|
| 146 |
st.dataframe(
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 159 |
'''
|
| 160 |
Show Chart
|
| 161 |
'''
|
| 162 |
-
|
| 163 |
# Initialize a session state variable for toggling the chart visibility
|
| 164 |
if "show_chart" not in st.session_state:
|
| 165 |
st.session_state.show_chart = False
|
|
@@ -232,15 +179,10 @@ def draw_table(dataset_displayname, metrics):
|
|
| 232 |
value = st_echarts(options=options, events=events, height="500px")
|
| 233 |
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 238 |
-
|
| 239 |
'''
|
| 240 |
Show Examples
|
| 241 |
'''
|
| 242 |
-
|
| 243 |
-
|
| 244 |
# Initialize a session state variable for toggling the chart visibility
|
| 245 |
if "show_examples" not in st.session_state:
|
| 246 |
st.session_state.show_examples = False
|
|
|
|
| 15 |
|
| 16 |
def draw_table(dataset_displayname, metrics):
|
| 17 |
|
|
|
|
|
|
|
| 18 |
with open('organize_model_results.json', 'r') as f:
|
| 19 |
organize_model_results = json.load(f)
|
| 20 |
|
| 21 |
+
dataset_nickname = displayname2datasetname[dataset_displayname]
|
| 22 |
model_results = organize_model_results[dataset_nickname][metrics]
|
| 23 |
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 24 |
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 28 |
'''
|
|
|
|
| 31 |
with st.container():
|
| 32 |
st.markdown('##### TABLE')
|
| 33 |
|
| 34 |
+
model_link_mapping = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
|
| 35 |
+
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname])
|
|
|
|
| 36 |
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def highlight_first_element(x):
|
| 39 |
# Create a DataFrame with the same shape as the input
|
| 40 |
+
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
|
| 41 |
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
|
| 42 |
return df_style
|
| 43 |
|
|
|
|
| 74 |
]:
|
| 75 |
|
| 76 |
chart_data_table = chart_data_table.sort_values(
|
| 77 |
+
by = chart_data_table.columns[1],
|
| 78 |
+
ascending = True
|
| 79 |
+
).reset_index(drop=True)
|
| 80 |
else:
|
| 81 |
chart_data_table = chart_data_table.sort_values(
|
| 82 |
+
by = chart_data_table.columns[1],
|
| 83 |
+
ascending = False
|
| 84 |
+
).reset_index(drop=True)
|
| 85 |
+
|
| 86 |
|
| 87 |
styled_df = chart_data_table.style.format(
|
| 88 |
+
{chart_data_table.columns[1]: "{:.3f}"}
|
| 89 |
+
).apply(
|
| 90 |
+
highlight_first_element, axis=None
|
| 91 |
+
)
|
| 92 |
|
| 93 |
|
| 94 |
st.dataframe(
|
| 95 |
+
styled_df,
|
| 96 |
+
column_config={
|
| 97 |
+
'model_show' : 'Model',
|
| 98 |
+
chart_data_table.columns[1]: {'alignment': 'left'},
|
| 99 |
+
"model_link" : st.column_config.LinkColumn("Model Link"),
|
| 100 |
+
},
|
| 101 |
+
hide_index=True,
|
| 102 |
+
use_container_width=True
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
|
| 106 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 107 |
'''
|
| 108 |
Show Chart
|
| 109 |
'''
|
|
|
|
| 110 |
# Initialize a session state variable for toggling the chart visibility
|
| 111 |
if "show_chart" not in st.session_state:
|
| 112 |
st.session_state.show_chart = False
|
|
|
|
| 179 |
value = st_echarts(options=options, events=events, height="500px")
|
| 180 |
|
| 181 |
|
|
|
|
|
|
|
| 182 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
|
|
|
| 183 |
'''
|
| 184 |
Show Examples
|
| 185 |
'''
|
|
|
|
|
|
|
| 186 |
# Initialize a session state variable for toggling the chart visibility
|
| 187 |
if "show_examples" not in st.session_state:
|
| 188 |
st.session_state.show_examples = False
|
app/pages.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from app.draw_diagram import
|
| 3 |
from app.content import *
|
| 4 |
-
from app.summarization import
|
| 5 |
|
| 6 |
def dataset_contents(dataset, metrics):
|
| 7 |
custom_css = """
|
|
@@ -115,7 +115,7 @@ def asr_english():
|
|
| 115 |
st.title("Task: Automatic Speech Recognition - English")
|
| 116 |
|
| 117 |
sum = ['Overall']
|
| 118 |
-
|
| 119 |
'LibriSpeech-Clean',
|
| 120 |
'LibriSpeech-Other',
|
| 121 |
'CommonVoice-15-EN',
|
|
@@ -126,32 +126,29 @@ def asr_english():
|
|
| 126 |
'TED-LIUM-3',
|
| 127 |
'TED-LIUM-3-LongForm',
|
| 128 |
]
|
| 129 |
-
|
| 130 |
-
filters_1_list = sum + dataset_lists
|
| 131 |
|
| 132 |
-
|
| 133 |
|
| 134 |
-
with
|
| 135 |
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 136 |
-
with
|
| 137 |
-
metric = st.selectbox('Metric', ['
|
|
|
|
| 138 |
|
| 139 |
if tab_section:
|
| 140 |
if tab_section in sum:
|
| 141 |
-
sum_table_mulit_metrix(
|
| 142 |
-
|
| 143 |
else:
|
| 144 |
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 145 |
draw_table(tab_section, metric)
|
| 146 |
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
def asr_singlish():
|
| 151 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
| 152 |
|
| 153 |
sum = ['Overall']
|
| 154 |
-
|
| 155 |
'MNSC-PART1-ASR',
|
| 156 |
'MNSC-PART2-ASR',
|
| 157 |
'MNSC-PART3-ASR',
|
|
@@ -161,20 +158,22 @@ def asr_singlish():
|
|
| 161 |
'SEAME-Dev-Man',
|
| 162 |
'SEAME-Dev-Sge',
|
| 163 |
]
|
| 164 |
-
|
| 165 |
-
filters_levelone = sum + dataset_lists
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
with
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
if
|
| 173 |
-
if
|
| 174 |
-
sum_table_mulit_metrix(
|
| 175 |
else:
|
| 176 |
-
dataset_contents(dataset_diaplay_information[
|
| 177 |
-
|
| 178 |
|
| 179 |
|
| 180 |
|
|
@@ -183,52 +182,56 @@ def asr_mandarin():
|
|
| 183 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
| 184 |
|
| 185 |
sum = ['Overall']
|
| 186 |
-
|
| 187 |
'AISHELL-ASR-ZH',
|
| 188 |
]
|
| 189 |
-
|
| 190 |
-
filters_levelone = sum + dataset_lists
|
| 191 |
|
| 192 |
-
|
| 193 |
|
| 194 |
-
with
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
| 200 |
else:
|
| 201 |
-
dataset_contents(dataset_diaplay_information[
|
| 202 |
-
|
| 203 |
|
| 204 |
-
|
| 205 |
|
|
|
|
| 206 |
|
| 207 |
def speech_translation():
|
| 208 |
st.title("Task: Speech Translation")
|
| 209 |
|
| 210 |
sum = ['Overall']
|
| 211 |
-
|
| 212 |
'CoVoST2-EN-ID',
|
| 213 |
'CoVoST2-EN-ZH',
|
| 214 |
'CoVoST2-EN-TA',
|
| 215 |
'CoVoST2-ID-EN',
|
| 216 |
'CoVoST2-ZH-EN',
|
| 217 |
'CoVoST2-TA-EN']
|
| 218 |
-
|
| 219 |
-
filters_levelone = sum + dataset_lists
|
| 220 |
|
| 221 |
-
|
| 222 |
|
| 223 |
-
with
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
| 229 |
else:
|
| 230 |
-
dataset_contents(dataset_diaplay_information[
|
| 231 |
-
|
| 232 |
|
| 233 |
|
| 234 |
|
|
@@ -237,93 +240,85 @@ def speech_question_answering_english():
|
|
| 237 |
st.title("Task: Spoken Question Answering - English")
|
| 238 |
|
| 239 |
sum = ['Overall']
|
| 240 |
-
|
| 241 |
-
dataset_lists = [
|
| 242 |
'CN-College-Listen-MCQ',
|
| 243 |
'DREAM-TTS-MCQ',
|
| 244 |
'SLUE-P2-SQA5',
|
| 245 |
'Public-SG-Speech-QA',
|
| 246 |
'Spoken-SQuAD',
|
| 247 |
]
|
| 248 |
-
|
| 249 |
-
filters_levelone = sum + dataset_lists
|
| 250 |
|
| 251 |
-
|
| 252 |
|
| 253 |
-
with
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
else:
|
| 265 |
-
dataset_contents(dataset_diaplay_information[
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
|
| 270 |
|
| 271 |
def speech_question_answering_singlish():
|
| 272 |
st.title("Task: Spoken Question Answering - Singlish")
|
| 273 |
|
| 274 |
sum = ['Overall']
|
| 275 |
-
|
| 276 |
-
dataset_lists = [
|
| 277 |
'MNSC-PART3-SQA',
|
| 278 |
'MNSC-PART4-SQA',
|
| 279 |
'MNSC-PART5-SQA',
|
| 280 |
'MNSC-PART6-SQA',
|
| 281 |
]
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
filters_levelone = sum + dataset_lists
|
| 285 |
|
| 286 |
-
|
| 287 |
|
| 288 |
-
with
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
-
if
|
| 292 |
-
if
|
| 293 |
-
sum_table_mulit_metrix(
|
| 294 |
-
|
| 295 |
else:
|
| 296 |
-
dataset_contents(dataset_diaplay_information[
|
| 297 |
-
|
| 298 |
|
| 299 |
|
| 300 |
def spoken_dialogue_summarization_singlish():
|
| 301 |
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
| 302 |
|
| 303 |
sum = ['Overall']
|
| 304 |
-
|
| 305 |
-
dataset_lists = [
|
| 306 |
'MNSC-PART3-SDS',
|
| 307 |
'MNSC-PART4-SDS',
|
| 308 |
'MNSC-PART5-SDS',
|
| 309 |
'MNSC-PART6-SDS',
|
| 310 |
]
|
|
|
|
| 311 |
|
| 312 |
-
|
| 313 |
-
filters_levelone = sum + dataset_lists
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
with
|
| 318 |
-
|
|
|
|
| 319 |
|
| 320 |
-
if
|
| 321 |
-
if
|
| 322 |
-
sum_table_mulit_metrix(
|
| 323 |
-
|
| 324 |
else:
|
| 325 |
-
dataset_contents(dataset_diaplay_information[
|
| 326 |
-
|
| 327 |
|
| 328 |
|
| 329 |
|
|
@@ -332,100 +327,72 @@ def speech_instruction():
|
|
| 332 |
st.title("Task: Speech Instruction")
|
| 333 |
|
| 334 |
sum = ['Overall']
|
| 335 |
-
|
| 336 |
-
dataset_lists = ['OpenHermes-Audio',
|
| 337 |
'ALPACA-Audio',
|
| 338 |
]
|
|
|
|
|
|
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 346 |
|
| 347 |
-
if
|
| 348 |
-
if
|
| 349 |
-
sum_table_mulit_metrix(
|
| 350 |
else:
|
| 351 |
-
dataset_contents(dataset_diaplay_information[
|
| 352 |
-
|
| 353 |
-
|
| 354 |
|
| 355 |
|
| 356 |
|
| 357 |
def audio_captioning():
|
| 358 |
st.title("Task: Audio Captioning")
|
| 359 |
|
| 360 |
-
|
| 361 |
'AudioCaps',
|
| 362 |
]
|
| 363 |
-
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
| 364 |
|
| 365 |
-
|
| 366 |
|
| 367 |
-
with
|
| 368 |
-
|
| 369 |
-
with
|
| 370 |
-
metric = st.selectbox('Metric',
|
| 371 |
-
|
| 372 |
-
if filter_1 or metric:
|
| 373 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
|
| 374 |
-
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
| 375 |
-
|
| 376 |
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
|
| 379 |
def audio_scene_question_answering():
|
| 380 |
st.title("Task: Audio Scene Question Answering")
|
| 381 |
|
| 382 |
sum = ['Overall']
|
| 383 |
-
|
| 384 |
-
dataset_lists = ['Clotho-AQA',
|
| 385 |
'WavCaps-QA',
|
| 386 |
'AudioCaps-QA']
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 391 |
-
|
| 392 |
-
with left:
|
| 393 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 394 |
-
|
| 395 |
-
if filter_1:
|
| 396 |
-
if filter_1 in sum:
|
| 397 |
-
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
| 398 |
-
else:
|
| 399 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
| 400 |
-
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
def emotion_recognition():
|
| 406 |
-
st.title("Task: Emotion Recognition")
|
| 407 |
-
|
| 408 |
-
sum = ['Overall']
|
| 409 |
|
| 410 |
-
|
| 411 |
-
'IEMOCAP-Emotion',
|
| 412 |
-
'MELD-Sentiment',
|
| 413 |
-
'MELD-Emotion',
|
| 414 |
-
]
|
| 415 |
-
|
| 416 |
-
filters_levelone = sum + dataset_lists
|
| 417 |
-
|
| 418 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 419 |
|
| 420 |
-
with
|
| 421 |
-
|
|
|
|
|
|
|
|
|
|
| 422 |
|
| 423 |
-
if
|
| 424 |
-
if
|
| 425 |
-
sum_table_mulit_metrix(
|
| 426 |
else:
|
| 427 |
-
dataset_contents(dataset_diaplay_information[
|
| 428 |
-
|
|
|
|
| 429 |
|
| 430 |
|
| 431 |
|
|
@@ -434,28 +401,27 @@ def accent_recognition():
|
|
| 434 |
st.title("Task: Accent Recognition")
|
| 435 |
|
| 436 |
sum = ['Overall']
|
| 437 |
-
|
| 438 |
'VoxCeleb-Accent',
|
| 439 |
'MNSC-AR-Sentence',
|
| 440 |
'MNSC-AR-Dialogue',
|
| 441 |
]
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
filters_levelone = sum + dataset_lists
|
| 445 |
|
| 446 |
-
|
| 447 |
|
| 448 |
-
with
|
| 449 |
-
|
| 450 |
-
|
|
|
|
|
|
|
| 451 |
|
| 452 |
-
if
|
| 453 |
-
if
|
| 454 |
-
sum_table_mulit_metrix(
|
| 455 |
else:
|
| 456 |
-
dataset_contents(dataset_diaplay_information[
|
| 457 |
-
|
| 458 |
-
|
| 459 |
|
| 460 |
|
| 461 |
|
|
@@ -463,25 +429,56 @@ def gender_recognition():
|
|
| 463 |
st.title("Task: Gender Recognition")
|
| 464 |
|
| 465 |
sum = ['Overall']
|
| 466 |
-
|
| 467 |
-
dataset_lists = [
|
| 468 |
'VoxCeleb-Gender',
|
| 469 |
'IEMOCAP-Gender'
|
| 470 |
]
|
| 471 |
-
|
| 472 |
-
filters_levelone = sum + dataset_lists
|
| 473 |
|
| 474 |
-
|
| 475 |
|
| 476 |
-
with
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
else:
|
| 483 |
-
dataset_contents(dataset_diaplay_information[
|
| 484 |
-
|
| 485 |
|
| 486 |
|
| 487 |
|
|
@@ -491,25 +488,25 @@ def music_understanding():
|
|
| 491 |
|
| 492 |
sum = ['Overall']
|
| 493 |
|
| 494 |
-
|
| 495 |
]
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 500 |
|
| 501 |
-
|
| 502 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 503 |
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
| 510 |
-
|
| 511 |
-
|
| 512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
|
| 515 |
|
|
@@ -520,8 +517,7 @@ def music_understanding():
|
|
| 520 |
def under_development():
|
| 521 |
st.title("Task: Under Development")
|
| 522 |
|
| 523 |
-
|
| 524 |
-
dataset_lists = [
|
| 525 |
'CNA',
|
| 526 |
'IDPC',
|
| 527 |
'Parliament',
|
|
@@ -536,43 +532,44 @@ def under_development():
|
|
| 536 |
'YTB-SQA-Batch1',
|
| 537 |
'YTB-SDS-Batch1',
|
| 538 |
'YTB-PQA-Batch1',
|
| 539 |
-
|
| 540 |
]
|
| 541 |
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 545 |
-
|
| 546 |
-
with left:
|
| 547 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 548 |
|
| 549 |
-
|
| 550 |
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
|
|
|
|
|
|
|
|
|
| 575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
|
| 578 |
def mmau_evaluation():
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from app.draw_diagram import draw_table
|
| 3 |
from app.content import *
|
| 4 |
+
from app.summarization import sum_table_mulit_metrix
|
| 5 |
|
| 6 |
def dataset_contents(dataset, metrics):
|
| 7 |
custom_css = """
|
|
|
|
| 115 |
st.title("Task: Automatic Speech Recognition - English")
|
| 116 |
|
| 117 |
sum = ['Overall']
|
| 118 |
+
dataset_list = [
|
| 119 |
'LibriSpeech-Clean',
|
| 120 |
'LibriSpeech-Other',
|
| 121 |
'CommonVoice-15-EN',
|
|
|
|
| 126 |
'TED-LIUM-3',
|
| 127 |
'TED-LIUM-3-LongForm',
|
| 128 |
]
|
| 129 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 130 |
|
| 131 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 132 |
|
| 133 |
+
with space1:
|
| 134 |
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 135 |
+
with space2:
|
| 136 |
+
metric = st.selectbox('Metric', ['WER'])
|
| 137 |
+
metric = metric.lower()
|
| 138 |
|
| 139 |
if tab_section:
|
| 140 |
if tab_section in sum:
|
| 141 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
|
| 142 |
else:
|
| 143 |
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 144 |
draw_table(tab_section, metric)
|
| 145 |
|
| 146 |
|
|
|
|
|
|
|
| 147 |
def asr_singlish():
|
| 148 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
| 149 |
|
| 150 |
sum = ['Overall']
|
| 151 |
+
dataset_list = [
|
| 152 |
'MNSC-PART1-ASR',
|
| 153 |
'MNSC-PART2-ASR',
|
| 154 |
'MNSC-PART3-ASR',
|
|
|
|
| 158 |
'SEAME-Dev-Man',
|
| 159 |
'SEAME-Dev-Sge',
|
| 160 |
]
|
| 161 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 162 |
|
| 163 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 164 |
|
| 165 |
+
with space1:
|
| 166 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 167 |
+
with space2:
|
| 168 |
+
metric = st.selectbox('Metric', ['WER'])
|
| 169 |
+
metric = metric.lower()
|
| 170 |
|
| 171 |
+
if tab_section:
|
| 172 |
+
if tab_section in sum:
|
| 173 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 174 |
else:
|
| 175 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 176 |
+
draw_table(tab_section, metric)
|
| 177 |
|
| 178 |
|
| 179 |
|
|
|
|
| 182 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
| 183 |
|
| 184 |
sum = ['Overall']
|
| 185 |
+
dataset_list = [
|
| 186 |
'AISHELL-ASR-ZH',
|
| 187 |
]
|
| 188 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 189 |
|
| 190 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 191 |
|
| 192 |
+
with space1:
|
| 193 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 194 |
+
with space2:
|
| 195 |
+
metric = st.selectbox('Metric', ['WER'])
|
| 196 |
+
metric = metric.lower()
|
| 197 |
+
|
| 198 |
+
if tab_section:
|
| 199 |
+
if tab_section in sum:
|
| 200 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 201 |
else:
|
| 202 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 203 |
+
draw_table(tab_section, metric)
|
| 204 |
|
|
|
|
| 205 |
|
| 206 |
+
|
| 207 |
|
| 208 |
def speech_translation():
|
| 209 |
st.title("Task: Speech Translation")
|
| 210 |
|
| 211 |
sum = ['Overall']
|
| 212 |
+
dataset_list = [
|
| 213 |
'CoVoST2-EN-ID',
|
| 214 |
'CoVoST2-EN-ZH',
|
| 215 |
'CoVoST2-EN-TA',
|
| 216 |
'CoVoST2-ID-EN',
|
| 217 |
'CoVoST2-ZH-EN',
|
| 218 |
'CoVoST2-TA-EN']
|
| 219 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 220 |
|
| 221 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 222 |
|
| 223 |
+
with space1:
|
| 224 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 225 |
+
with space2:
|
| 226 |
+
metric = st.selectbox('Metric', ['BLEU'])
|
| 227 |
+
metric = metric.lower()
|
| 228 |
+
|
| 229 |
+
if tab_section:
|
| 230 |
+
if tab_section in sum:
|
| 231 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 232 |
else:
|
| 233 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 234 |
+
draw_table(tab_section, metric)
|
| 235 |
|
| 236 |
|
| 237 |
|
|
|
|
| 240 |
st.title("Task: Spoken Question Answering - English")
|
| 241 |
|
| 242 |
sum = ['Overall']
|
| 243 |
+
dataset_list = [
|
|
|
|
| 244 |
'CN-College-Listen-MCQ',
|
| 245 |
'DREAM-TTS-MCQ',
|
| 246 |
'SLUE-P2-SQA5',
|
| 247 |
'Public-SG-Speech-QA',
|
| 248 |
'Spoken-SQuAD',
|
| 249 |
]
|
| 250 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 251 |
|
| 252 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 253 |
|
| 254 |
+
with space1:
|
| 255 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 256 |
+
with space2:
|
| 257 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 258 |
+
metric = metric.lower()
|
|
|
|
| 259 |
|
| 260 |
+
if tab_section:
|
| 261 |
+
if tab_section in sum:
|
| 262 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
|
| 263 |
else:
|
| 264 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 265 |
+
draw_table(tab_section, metric)
|
|
|
|
|
|
|
| 266 |
|
| 267 |
|
| 268 |
def speech_question_answering_singlish():
|
| 269 |
st.title("Task: Spoken Question Answering - Singlish")
|
| 270 |
|
| 271 |
sum = ['Overall']
|
| 272 |
+
dataset_list = [
|
|
|
|
| 273 |
'MNSC-PART3-SQA',
|
| 274 |
'MNSC-PART4-SQA',
|
| 275 |
'MNSC-PART5-SQA',
|
| 276 |
'MNSC-PART6-SQA',
|
| 277 |
]
|
| 278 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 281 |
|
| 282 |
+
with space1:
|
| 283 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 284 |
+
with space2:
|
| 285 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 286 |
+
metric = metric.lower()
|
| 287 |
|
| 288 |
+
if tab_section:
|
| 289 |
+
if tab_section in sum:
|
| 290 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
|
| 291 |
else:
|
| 292 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 293 |
+
draw_table(tab_section, metric)
|
| 294 |
|
| 295 |
|
| 296 |
def spoken_dialogue_summarization_singlish():
|
| 297 |
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
| 298 |
|
| 299 |
sum = ['Overall']
|
| 300 |
+
dataset_list = [
|
|
|
|
| 301 |
'MNSC-PART3-SDS',
|
| 302 |
'MNSC-PART4-SDS',
|
| 303 |
'MNSC-PART5-SDS',
|
| 304 |
'MNSC-PART6-SDS',
|
| 305 |
]
|
| 306 |
+
filters_1_list = sum + dataset_list
|
| 307 |
|
| 308 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
|
| 309 |
|
| 310 |
+
with space1:
|
| 311 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 312 |
+
with space2:
|
| 313 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 314 |
+
metric = metric.lower()
|
| 315 |
|
| 316 |
+
if tab_section:
|
| 317 |
+
if tab_section in sum:
|
| 318 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
|
|
|
| 319 |
else:
|
| 320 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 321 |
+
draw_table(tab_section, metric)
|
| 322 |
|
| 323 |
|
| 324 |
|
|
|
|
| 327 |
st.title("Task: Speech Instruction")
|
| 328 |
|
| 329 |
sum = ['Overall']
|
| 330 |
+
dataset_list = ['OpenHermes-Audio',
|
|
|
|
| 331 |
'ALPACA-Audio',
|
| 332 |
]
|
| 333 |
+
filters_1_list = sum + dataset_list
|
| 334 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 335 |
|
| 336 |
+
with space1:
|
| 337 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 338 |
+
with space2:
|
| 339 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 340 |
+
metric = metric.lower()
|
|
|
|
| 341 |
|
| 342 |
+
if tab_section:
|
| 343 |
+
if tab_section in sum:
|
| 344 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 345 |
else:
|
| 346 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 347 |
+
draw_table(tab_section, metric)
|
|
|
|
| 348 |
|
| 349 |
|
| 350 |
|
| 351 |
def audio_captioning():
|
| 352 |
st.title("Task: Audio Captioning")
|
| 353 |
|
| 354 |
+
dataset_list = [ 'WavCaps',
|
| 355 |
'AudioCaps',
|
| 356 |
]
|
|
|
|
| 357 |
|
| 358 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 359 |
|
| 360 |
+
with space1:
|
| 361 |
+
tab_section = st.selectbox('Dataset', dataset_list)
|
| 362 |
+
with space2:
|
| 363 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE', 'METEOR'])
|
| 364 |
+
metric = metric.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
+
if tab_section:
|
| 367 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 368 |
+
draw_table(tab_section, metric)
|
| 369 |
|
| 370 |
|
| 371 |
def audio_scene_question_answering():
|
| 372 |
st.title("Task: Audio Scene Question Answering")
|
| 373 |
|
| 374 |
sum = ['Overall']
|
| 375 |
+
dataset_list = ['Clotho-AQA',
|
|
|
|
| 376 |
'WavCaps-QA',
|
| 377 |
'AudioCaps-QA']
|
| 378 |
|
| 379 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
+
with space1:
|
| 384 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 385 |
+
with space2:
|
| 386 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 387 |
+
metric = metric.lower()
|
| 388 |
|
| 389 |
+
if tab_section:
|
| 390 |
+
if tab_section in sum:
|
| 391 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 392 |
else:
|
| 393 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 394 |
+
draw_table(tab_section, metric)
|
| 395 |
+
|
| 396 |
|
| 397 |
|
| 398 |
|
|
|
|
| 401 |
st.title("Task: Accent Recognition")
|
| 402 |
|
| 403 |
sum = ['Overall']
|
| 404 |
+
dataset_list = [
|
| 405 |
'VoxCeleb-Accent',
|
| 406 |
'MNSC-AR-Sentence',
|
| 407 |
'MNSC-AR-Dialogue',
|
| 408 |
]
|
| 409 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
|
|
| 410 |
|
| 411 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 412 |
|
| 413 |
+
with space1:
|
| 414 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 415 |
+
with space2:
|
| 416 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 417 |
+
metric = metric.lower()
|
| 418 |
|
| 419 |
+
if tab_section:
|
| 420 |
+
if tab_section in sum:
|
| 421 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 422 |
else:
|
| 423 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 424 |
+
draw_table(tab_section, metric)
|
|
|
|
| 425 |
|
| 426 |
|
| 427 |
|
|
|
|
| 429 |
st.title("Task: Gender Recognition")
|
| 430 |
|
| 431 |
sum = ['Overall']
|
| 432 |
+
dataset_list = [
|
|
|
|
| 433 |
'VoxCeleb-Gender',
|
| 434 |
'IEMOCAP-Gender'
|
| 435 |
]
|
| 436 |
+
filters_1_list = sum + dataset_list
|
|
|
|
| 437 |
|
| 438 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 439 |
|
| 440 |
+
with space1:
|
| 441 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 442 |
+
with space2:
|
| 443 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 444 |
+
metric = metric.lower()
|
| 445 |
+
|
| 446 |
+
if tab_section:
|
| 447 |
+
if tab_section in sum:
|
| 448 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 449 |
+
else:
|
| 450 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 451 |
+
draw_table(tab_section, metric)
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def emotion_recognition():
|
| 458 |
+
st.title("Task: Emotion Recognition")
|
| 459 |
+
|
| 460 |
+
sum = ['Overall']
|
| 461 |
+
dataset_list = [
|
| 462 |
+
'IEMOCAP-Emotion',
|
| 463 |
+
'MELD-Sentiment',
|
| 464 |
+
'MELD-Emotion',
|
| 465 |
+
]
|
| 466 |
+
filters_1_list = sum + dataset_list
|
| 467 |
+
|
| 468 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 469 |
|
| 470 |
+
with space1:
|
| 471 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 472 |
+
with space2:
|
| 473 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 474 |
+
metric = metric.lower()
|
| 475 |
+
|
| 476 |
+
if tab_section:
|
| 477 |
+
if tab_section in sum:
|
| 478 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 479 |
else:
|
| 480 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 481 |
+
draw_table(tab_section, metric)
|
| 482 |
|
| 483 |
|
| 484 |
|
|
|
|
| 488 |
|
| 489 |
sum = ['Overall']
|
| 490 |
|
| 491 |
+
dataset_list = ['MuChoMusic',
|
| 492 |
]
|
| 493 |
|
| 494 |
+
filters_1_list = sum + dataset_list
|
|
|
|
|
|
|
| 495 |
|
| 496 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
|
|
|
| 497 |
|
| 498 |
+
with space1:
|
| 499 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 500 |
+
with space2:
|
| 501 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 502 |
+
metric = metric.lower()
|
|
|
|
|
|
|
|
|
|
| 503 |
|
| 504 |
+
if tab_section:
|
| 505 |
+
if tab_section in sum:
|
| 506 |
+
sum_table_mulit_metrix(dataset_list, metric)
|
| 507 |
+
else:
|
| 508 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 509 |
+
draw_table(tab_section, metric)
|
| 510 |
|
| 511 |
|
| 512 |
|
|
|
|
| 517 |
def under_development():
|
| 518 |
st.title("Task: Under Development")
|
| 519 |
|
| 520 |
+
dataset_list = [
|
|
|
|
| 521 |
'CNA',
|
| 522 |
'IDPC',
|
| 523 |
'Parliament',
|
|
|
|
| 532 |
'YTB-SQA-Batch1',
|
| 533 |
'YTB-SDS-Batch1',
|
| 534 |
'YTB-PQA-Batch1',
|
|
|
|
| 535 |
]
|
| 536 |
|
| 537 |
+
filters_1_list = dataset_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
|
| 539 |
+
space1, space2, _, _ = st.columns([0.4, 0.4, 0.2 ,0.2])
|
| 540 |
|
| 541 |
+
with space1:
|
| 542 |
+
tab_section = st.selectbox('Dataset', filters_1_list)
|
| 543 |
+
with space2:
|
| 544 |
+
if tab_section in [
|
| 545 |
+
'CNA',
|
| 546 |
+
'IDPC',
|
| 547 |
+
'Parliament',
|
| 548 |
+
'UKUS-News',
|
| 549 |
+
'Mediacorp',
|
| 550 |
+
'IDPC-Short',
|
| 551 |
+
'Parliament-Short',
|
| 552 |
+
'UKUS-News-Short',
|
| 553 |
+
'Mediacorp-Short',
|
| 554 |
+
'YTB-ASR-Batch1',
|
| 555 |
+
'YTB-ASR-Batch2',
|
| 556 |
+
]:
|
| 557 |
+
metric = st.selectbox('Metric', ['WER'])
|
| 558 |
+
metric = metric.lower()
|
| 559 |
+
elif tab_section in [
|
| 560 |
+
'YTB-SQA-Batch1',
|
| 561 |
+
'YTB-SDS-Batch1',
|
| 562 |
+
'YTB-PQA-Batch1',
|
| 563 |
+
]:
|
| 564 |
+
metric = st.selectbox('Metric', ['LLAMA3_70B_JUDGE'])
|
| 565 |
+
metric = metric.lower()
|
| 566 |
+
else:
|
| 567 |
+
raise ValueError('Invalid dataset')
|
| 568 |
|
| 569 |
+
|
| 570 |
+
if tab_section:
|
| 571 |
+
dataset_contents(dataset_diaplay_information[tab_section], metrics_info[metric])
|
| 572 |
+
draw_table(tab_section, metric)
|
| 573 |
|
| 574 |
|
| 575 |
def mmau_evaluation():
|
app/summarization.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
from streamlit_echarts import st_echarts
|
| 5 |
from streamlit.components.v1 import html
|
| 6 |
# from PIL import Image
|
|
@@ -14,20 +17,27 @@ from model_information import get_dataframe
|
|
| 14 |
|
| 15 |
info_df = get_dataframe()
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
for
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
selected_columns = [i for i in chart_data.columns if i != 'Model']
|
| 33 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
|
@@ -81,7 +91,7 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
| 81 |
# Format numeric columns to 2 decimal places
|
| 82 |
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
| 83 |
|
| 84 |
-
if
|
| 85 |
ascend = True
|
| 86 |
else:
|
| 87 |
ascend= False
|
|
@@ -124,4 +134,4 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
| 124 |
)
|
| 125 |
|
| 126 |
# Only report the last metrics
|
| 127 |
-
st.markdown(f'###### Metric: {metrics_info[
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
from streamlit_echarts import st_echarts
|
| 8 |
from streamlit.components.v1 import html
|
| 9 |
# from PIL import Image
|
|
|
|
| 17 |
|
| 18 |
info_df = get_dataframe()
|
| 19 |
|
| 20 |
+
def sum_table_mulit_metrix(dataset_displayname_list, metric):
|
| 21 |
|
| 22 |
+
with open('organize_model_results.json', 'r') as f:
|
| 23 |
+
organize_model_results = json.load(f)
|
| 24 |
|
| 25 |
+
dataset_results = {}
|
| 26 |
+
|
| 27 |
+
for dataset_displayname in dataset_displayname_list:
|
| 28 |
+
dataset_nickname = displayname2datasetname[dataset_displayname]
|
| 29 |
+
model_results = organize_model_results[dataset_nickname][metric]
|
| 30 |
+
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 31 |
+
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
|
| 32 |
+
|
| 33 |
+
dataset_results[dataset_displayname] = model_results
|
| 34 |
+
|
| 35 |
+
df_results = pd.DataFrame(dataset_results)
|
| 36 |
+
|
| 37 |
+
# Reset index to have models as a column
|
| 38 |
+
df_results.reset_index(inplace=True)
|
| 39 |
+
df_results.rename(columns={"index": "Model"}, inplace=True)
|
| 40 |
+
chart_data = df_results
|
| 41 |
|
| 42 |
selected_columns = [i for i in chart_data.columns if i != 'Model']
|
| 43 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
|
|
|
| 91 |
# Format numeric columns to 2 decimal places
|
| 92 |
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
|
| 93 |
|
| 94 |
+
if metric == 'wer':
|
| 95 |
ascend = True
|
| 96 |
else:
|
| 97 |
ascend= False
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
# Only report the last metrics
|
| 137 |
+
st.markdown(f'###### Metric: {metrics_info[metric]}')
|