Upload folder using huggingface_hub
Browse files- app/content.py +87 -75
- app/draw_diagram.py +1 -1
- app/pages.py +166 -117
- app/summarization.py +1 -1
app/content.py
CHANGED
|
@@ -1,3 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
asr_datsets = {'LibriSpeech-Test-Clean': 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
|
| 2 |
'LibriSpeech-Test-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
|
| 3 |
'Common-Voice-15-En-Test': 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
|
|
@@ -19,31 +70,39 @@ singlish_asr_datasets = {
|
|
| 19 |
}
|
| 20 |
|
| 21 |
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.',
|
| 22 |
-
'DREAM-TTS-MCQ-Test': 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
|
| 23 |
-
'SLUE-P2-SQA5-Test': 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
|
| 24 |
-
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.',
|
| 25 |
-
'Spoken-Squad-Test': 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.'
|
| 26 |
}
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
}
|
| 31 |
|
| 32 |
ac_datasets = {
|
| 33 |
-
'WavCaps-Test': 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
|
| 34 |
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.'
|
| 35 |
}
|
| 36 |
|
| 37 |
asqa_datasets = {
|
| 38 |
-
'Clotho-AQA-Test': 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
|
| 39 |
-
'WavCaps-QA-Test': 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
|
| 40 |
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.'
|
| 41 |
}
|
| 42 |
|
| 43 |
er_datasets = {
|
| 44 |
-
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
|
| 45 |
-
'MELD-Sentiment-Test': 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
|
| 46 |
-
'MELD-Emotion-Test': 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.'
|
| 47 |
}
|
| 48 |
|
| 49 |
ar_datsets = {
|
|
@@ -51,17 +110,17 @@ ar_datsets = {
|
|
| 51 |
}
|
| 52 |
|
| 53 |
gr_datasets = {
|
| 54 |
-
'VoxCeleb-Gender-Test': 'Test dataset for gender classification, also derived from VoxCeleb.',
|
| 55 |
-
'IEMOCAP-Gender-Test': 'Gender classification based on the IEMOCAP dataset.'
|
| 56 |
}
|
| 57 |
|
| 58 |
spt_datasets = {
|
| 59 |
-
'
|
| 60 |
-
'
|
| 61 |
-
'
|
| 62 |
-
'
|
| 63 |
-
'
|
| 64 |
-
'
|
| 65 |
}
|
| 66 |
|
| 67 |
cnasr_datasets = {
|
|
@@ -73,65 +132,18 @@ MUSIC_MCQ_DATASETS = {
|
|
| 73 |
}
|
| 74 |
|
| 75 |
metrics = {
|
| 76 |
-
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
| 77 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
| 78 |
-
'llama3_70b_judge': 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
|
| 79 |
-
'meteor': 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
|
| 80 |
-
'bleu': 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)',
|
| 81 |
}
|
| 82 |
|
| 83 |
metrics_info = {
|
| 84 |
-
'wer': 'Word Error Rate (WER) - The Lower, the better.',
|
| 85 |
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 86 |
-
'llama3_70b_judge': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 87 |
-
'meteor': 'METEOR Score. The higher, the better.',
|
| 88 |
-
'bleu': 'BLEU Score. The higher, the better.',
|
| 89 |
}
|
| 90 |
|
| 91 |
-
|
| 92 |
-
dataname_column_rename_in_table = {
|
| 93 |
-
'librispeech_test_clean' : 'LibriSpeech-Clean',
|
| 94 |
-
'librispeech_test_other' : 'LibriSpeech-Other',
|
| 95 |
-
'common_voice_15_en_test' : 'CommonVoice-15-EN',
|
| 96 |
-
'peoples_speech_test' : 'Peoples-Speech',
|
| 97 |
-
'gigaspeech_test' : 'GigaSpeech-1',
|
| 98 |
-
'earnings21_test' : 'Earnings-21',
|
| 99 |
-
'earnings22_test' : 'Earnings-22',
|
| 100 |
-
'tedlium3_test' : 'TED-LIUM-3',
|
| 101 |
-
'tedlium3_long_form_test' : 'TED-LIUM-3-Long',
|
| 102 |
-
'aishell_asr_zh_test' : 'Aishell-ASR-ZH',
|
| 103 |
-
'covost2_en_id_test' : 'Covost2-EN-ID',
|
| 104 |
-
'covost2_en_zh_test' : 'Covost2-EN-ZH',
|
| 105 |
-
'covost2_en_ta_test' : 'Covost2-EN-TA',
|
| 106 |
-
'covost2_id_en_test' : 'Covost2-ID-EN',
|
| 107 |
-
'covost2_zh_en_test' : 'Covost2-ZH-EN',
|
| 108 |
-
'covost2_ta_en_test' : 'Covost2-TA-EN',
|
| 109 |
-
'cn_college_listen_mcq_test': 'CN-College-Listen-MCQ',
|
| 110 |
-
'dream_tts_mcq_test' : 'DREAM-TTS-MCQ',
|
| 111 |
-
'slue_p2_sqa5_test' : 'SLUE-P2-SQA5',
|
| 112 |
-
'public_sg_speech_qa_test' : 'Public-SG-Speech-QA',
|
| 113 |
-
'spoken_squad_test' : 'Spoken-SQuAD',
|
| 114 |
-
'openhermes_audio_test' : 'OpenHermes-Audio',
|
| 115 |
-
'alpaca_audio_test' : 'ALPACA-Audio',
|
| 116 |
-
'wavcaps_test' : 'WavCaps',
|
| 117 |
-
'audiocaps_test' : 'AudioCaps',
|
| 118 |
-
'clotho_aqa_test' : 'Clotho-AQA',
|
| 119 |
-
'wavcaps_qa_test' : 'WavCaps-QA',
|
| 120 |
-
'audiocaps_qa_test' : 'AudioCaps-QA',
|
| 121 |
-
'voxceleb_accent_test' : 'VoxCeleb-Accent',
|
| 122 |
-
'voxceleb_gender_test' : 'VoxCeleb-Gender',
|
| 123 |
-
'iemocap_gender_test' : 'IEMOCAP-Gender',
|
| 124 |
-
'iemocap_emotion_test' : 'IEMOCAP-Emotion',
|
| 125 |
-
'meld_sentiment_test' : 'MELD-Sentiment',
|
| 126 |
-
'meld_emotion_test' : 'MELD-Emotion',
|
| 127 |
-
'imda_part1_asr_test' : 'IMDA-Part1-ASR',
|
| 128 |
-
'imda_part2_asr_test' : 'IMDA-Part2-ASR',
|
| 129 |
-
'imda_part3_30s_asr_test' : 'IMDA-Part3-30s-ASR',
|
| 130 |
-
'imda_part4_30s_asr_test' : 'IMDA-Part4-30s-ASR',
|
| 131 |
-
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR',
|
| 132 |
-
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR',
|
| 133 |
-
|
| 134 |
-
'muchomusic_test' : 'MuChoMusic'
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
}
|
|
|
|
| 1 |
+
|
| 2 |
+
dataname_column_rename_in_table = {
|
| 3 |
+
'librispeech_test_clean' : 'LibriSpeech-Clean',
|
| 4 |
+
'librispeech_test_other' : 'LibriSpeech-Other',
|
| 5 |
+
'common_voice_15_en_test' : 'CommonVoice-15-EN',
|
| 6 |
+
'peoples_speech_test' : 'Peoples-Speech',
|
| 7 |
+
'gigaspeech_test' : 'GigaSpeech-1',
|
| 8 |
+
'earnings21_test' : 'Earnings-21',
|
| 9 |
+
'earnings22_test' : 'Earnings-22',
|
| 10 |
+
'tedlium3_test' : 'TED-LIUM-3',
|
| 11 |
+
'tedlium3_long_form_test' : 'TED-LIUM-3-Long',
|
| 12 |
+
'aishell_asr_zh_test' : 'Aishell-ASR-ZH',
|
| 13 |
+
'covost2_en_id_test' : 'CoVoST2-EN-ID',
|
| 14 |
+
'covost2_en_zh_test' : 'CoVoST2-EN-ZH',
|
| 15 |
+
'covost2_en_ta_test' : 'CoVoST2-EN-TA',
|
| 16 |
+
'covost2_id_en_test' : 'CoVoST2-ID-EN',
|
| 17 |
+
'covost2_zh_en_test' : 'CoVoST2-ZH-EN',
|
| 18 |
+
'covost2_ta_en_test' : 'CoVoST2-TA-EN',
|
| 19 |
+
'cn_college_listen_mcq_test' : 'CN-College-Listen-MCQ',
|
| 20 |
+
'dream_tts_mcq_test' : 'DREAM-TTS-MCQ',
|
| 21 |
+
'slue_p2_sqa5_test' : 'SLUE-P2-SQA5',
|
| 22 |
+
'public_sg_speech_qa_test' : 'Public-SG-Speech-QA',
|
| 23 |
+
'spoken_squad_test' : 'Spoken-SQuAD',
|
| 24 |
+
'openhermes_audio_test' : 'OpenHermes-Audio',
|
| 25 |
+
'alpaca_audio_test' : 'ALPACA-Audio',
|
| 26 |
+
'wavcaps_test' : 'WavCaps',
|
| 27 |
+
'audiocaps_test' : 'AudioCaps',
|
| 28 |
+
'clotho_aqa_test' : 'Clotho-AQA',
|
| 29 |
+
'wavcaps_qa_test' : 'WavCaps-QA',
|
| 30 |
+
'audiocaps_qa_test' : 'AudioCaps-QA',
|
| 31 |
+
'voxceleb_accent_test' : 'VoxCeleb-Accent',
|
| 32 |
+
'voxceleb_gender_test' : 'VoxCeleb-Gender',
|
| 33 |
+
'iemocap_gender_test' : 'IEMOCAP-Gender',
|
| 34 |
+
'iemocap_emotion_test' : 'IEMOCAP-Emotion',
|
| 35 |
+
'meld_sentiment_test' : 'MELD-Sentiment',
|
| 36 |
+
'meld_emotion_test' : 'MELD-Emotion',
|
| 37 |
+
'imda_part1_asr_test' : 'IMDA-Part1-ASR',
|
| 38 |
+
'imda_part2_asr_test' : 'IMDA-Part2-ASR',
|
| 39 |
+
'imda_part3_30s_asr_test' : 'IMDA-Part3-30s-ASR',
|
| 40 |
+
'imda_part4_30s_asr_test' : 'IMDA-Part4-30s-ASR',
|
| 41 |
+
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR',
|
| 42 |
+
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR',
|
| 43 |
+
'muchomusic_test' : 'MuChoMusic',
|
| 44 |
+
'imda_part3_30s_sqa_human_test': 'MNSC-PART3-SQA',
|
| 45 |
+
'imda_part4_30s_sqa_human_test': 'MNSC-PART4-SQA',
|
| 46 |
+
'imda_part5_30s_sqa_human_test': 'MNSC-PART5-SQA',
|
| 47 |
+
'imda_part6_30s_sqa_human_test': 'MNSC-PART6-SQA',
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
asr_datsets = {'LibriSpeech-Test-Clean': 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
|
| 53 |
'LibriSpeech-Test-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
|
| 54 |
'Common-Voice-15-En-Test': 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
|
|
|
|
| 70 |
}
|
| 71 |
|
| 72 |
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.',
|
| 73 |
+
'DREAM-TTS-MCQ-Test' : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
|
| 74 |
+
'SLUE-P2-SQA5-Test' : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
|
| 75 |
+
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.',
|
| 76 |
+
'Spoken-Squad-Test' : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.'
|
| 77 |
}
|
| 78 |
|
| 79 |
+
sqa_singlish_datasets = {
|
| 80 |
+
'MNSC-PART3-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
|
| 81 |
+
'MNSC-PART4-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
|
| 82 |
+
'MNSC-PART5-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
|
| 83 |
+
'MNSC-PART6-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
si_datasets = {
|
| 87 |
+
'OpenHermes-Audio-Test': 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
|
| 88 |
+
'ALPACA-Audio-Test' : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.'
|
| 89 |
}
|
| 90 |
|
| 91 |
ac_datasets = {
|
| 92 |
+
'WavCaps-Test' : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
|
| 93 |
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.'
|
| 94 |
}
|
| 95 |
|
| 96 |
asqa_datasets = {
|
| 97 |
+
'Clotho-AQA-Test' : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
|
| 98 |
+
'WavCaps-QA-Test' : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
|
| 99 |
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.'
|
| 100 |
}
|
| 101 |
|
| 102 |
er_datasets = {
|
| 103 |
+
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
|
| 104 |
+
'MELD-Sentiment-Test' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
|
| 105 |
+
'MELD-Emotion-Test' : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.'
|
| 106 |
}
|
| 107 |
|
| 108 |
ar_datsets = {
|
|
|
|
| 110 |
}
|
| 111 |
|
| 112 |
gr_datasets = {
|
| 113 |
+
'VoxCeleb-Gender-Test': 'Test dataset for gender classification, also derived from VoxCeleb.',
|
| 114 |
+
'IEMOCAP-Gender-Test' : 'Gender classification based on the IEMOCAP dataset.'
|
| 115 |
}
|
| 116 |
|
| 117 |
spt_datasets = {
|
| 118 |
+
'CoVoST2-EN-ID-test': 'CoVoST 2 dataset for speech translation from English to Indonesian.',
|
| 119 |
+
'CoVoST2-EN-ZH-test': 'CoVoST 2 dataset for speech translation from English to Chinese.',
|
| 120 |
+
'CoVoST2-EN-TA-test': 'CoVoST 2 dataset for speech translation from English to Tamil.',
|
| 121 |
+
'CoVoST2-ID-EN-test': 'CoVoST 2 dataset for speech translation from Indonesian to English.',
|
| 122 |
+
'CoVoST2-ZH-EN-test': 'CoVoST 2 dataset for speech translation from Chinese to English.',
|
| 123 |
+
'CoVoST2-TA-EN-test': 'CoVoST 2 dataset for speech translation from Tamil to English.'
|
| 124 |
}
|
| 125 |
|
| 126 |
cnasr_datasets = {
|
|
|
|
| 132 |
}
|
| 133 |
|
| 134 |
metrics = {
|
| 135 |
+
'wer' : 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
| 136 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
| 137 |
+
'llama3_70b_judge' : 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
|
| 138 |
+
'meteor' : 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
|
| 139 |
+
'bleu' : 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)',
|
| 140 |
}
|
| 141 |
|
| 142 |
metrics_info = {
|
| 143 |
+
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
| 144 |
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 145 |
+
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
|
| 146 |
+
'meteor' : 'METEOR Score. The higher, the better.',
|
| 147 |
+
'bleu' : 'BLEU Score. The higher, the better.',
|
| 148 |
}
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/draw_diagram.py
CHANGED
|
@@ -17,7 +17,7 @@ info_df = get_dataframe()
|
|
| 17 |
|
| 18 |
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
| 19 |
|
| 20 |
-
folder = f"./
|
| 21 |
|
| 22 |
# Load the results from CSV
|
| 23 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
|
|
|
| 17 |
|
| 18 |
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
| 19 |
|
| 20 |
+
folder = f"./results_organized/{metrics}/"
|
| 21 |
|
| 22 |
# Load the results from CSV
|
| 23 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
app/pages.py
CHANGED
|
@@ -29,38 +29,33 @@ def dataset_contents(dataset, metrics):
|
|
| 29 |
def dashboard():
|
| 30 |
|
| 31 |
with st.container():
|
| 32 |
-
st.title("AudioBench")
|
| 33 |
|
| 34 |
st.markdown("""
|
| 35 |
-
[
|
| 36 |
-
[
|
| 37 |
-
[![GitHub
|
|
|
|
|
|
|
| 38 |
""")
|
| 39 |
|
| 40 |
|
| 41 |
st.markdown("""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
- **Dec
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
- **Dec, 2024**:
|
| 49 |
-
- Updated layout and added support for comparison between models with similar sizes.
|
| 50 |
-
- Reorganized layout for a better user experience.
|
| 51 |
-
- Added performance summary for each task.
|
| 52 |
-
|
| 53 |
-
- **Aug 2024**:
|
| 54 |
-
- Initial leaderboard is now online.
|
| 55 |
""")
|
| 56 |
|
| 57 |
st.divider()
|
| 58 |
|
| 59 |
st.markdown("""
|
| 60 |
-
####
|
| 61 |
|
| 62 |
- AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
|
| 63 |
-
- AudioBench is
|
| 64 |
|
| 65 |
Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
|
| 66 |
"""
|
|
@@ -68,27 +63,19 @@ def dashboard():
|
|
| 68 |
|
| 69 |
|
| 70 |
with st.container():
|
| 71 |
-
left_co, center_co, right_co = st.columns([1, 0.5, 0.5])
|
| 72 |
-
with left_co:
|
| 73 |
-
st.image("./style/audio_overview.png",
|
| 74 |
-
caption="Overview of the datasets in AudioBench.",
|
| 75 |
-
)
|
| 76 |
|
| 77 |
st.markdown('''
|
| 78 |
-
|
| 79 |
-
|
| 80 |
''')
|
| 81 |
|
| 82 |
st.markdown("###### :dart: Our Benchmark includes: ")
|
| 83 |
-
cols = st.columns(
|
| 84 |
cols[0].metric(label="Tasks", value=">8")
|
| 85 |
cols[1].metric(label="Datasets", value=">40")
|
| 86 |
cols[2].metric(label="Evaluated Models", value=">5")
|
| 87 |
-
|
| 88 |
-
|
| 89 |
st.divider()
|
| 90 |
with st.container():
|
| 91 |
-
left_co,
|
| 92 |
|
| 93 |
with left_co:
|
| 94 |
st.markdown("""
|
|
@@ -104,8 +91,10 @@ def dashboard():
|
|
| 104 |
""")
|
| 105 |
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
| 110 |
sum = ['Overall']
|
| 111 |
dataset_lists = [
|
|
@@ -122,20 +111,23 @@ def asr():
|
|
| 122 |
|
| 123 |
filters_levelone = sum + dataset_lists
|
| 124 |
|
| 125 |
-
left, center, _, middle, right = st.columns([0.
|
| 126 |
|
| 127 |
with left:
|
| 128 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 129 |
|
| 130 |
if filter_1:
|
| 131 |
if filter_1 in sum:
|
| 132 |
-
sum_table_mulit_metrix('
|
| 133 |
else:
|
| 134 |
dataset_contents(asr_datsets[filter_1], metrics['wer'])
|
| 135 |
-
draw('su', '
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
| 140 |
|
| 141 |
sum = ['Overall']
|
|
@@ -150,20 +142,22 @@ def singlish_asr():
|
|
| 150 |
|
| 151 |
filters_levelone = sum + dataset_lists
|
| 152 |
|
| 153 |
-
left, center, _, middle, right = st.columns([0.
|
| 154 |
|
| 155 |
with left:
|
| 156 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 157 |
|
| 158 |
if filter_1:
|
| 159 |
if filter_1 in sum:
|
| 160 |
-
sum_table_mulit_metrix('
|
| 161 |
else:
|
| 162 |
dataset_contents(singlish_asr_datasets[filter_1], metrics['wer'])
|
| 163 |
-
draw('su', '
|
|
|
|
| 164 |
|
| 165 |
|
| 166 |
-
|
|
|
|
| 167 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
| 168 |
|
| 169 |
sum = ['Overall']
|
|
@@ -173,80 +167,151 @@ def cnasr():
|
|
| 173 |
|
| 174 |
filters_levelone = sum + dataset_lists
|
| 175 |
|
| 176 |
-
left, center, _, middle, right = st.columns([0.
|
| 177 |
|
| 178 |
with left:
|
| 179 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 180 |
|
| 181 |
if filter_1:
|
| 182 |
if filter_1 in sum:
|
| 183 |
-
sum_table_mulit_metrix('
|
| 184 |
else:
|
| 185 |
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
|
| 186 |
-
draw('su', '
|
| 187 |
|
| 188 |
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
sum = ['Overall']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
|
| 196 |
|
| 197 |
-
rest = ['SLUE-P2-SQA5-Test',
|
| 198 |
-
'Public-SG-Speech-QA-Test',
|
| 199 |
-
'Spoken-Squad-Test']
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
with left:
|
| 206 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 207 |
|
| 208 |
if filter_1:
|
| 209 |
if filter_1 in sum:
|
| 210 |
-
sum_table_mulit_metrix('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
else:
|
| 217 |
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 218 |
-
draw('su', '
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
|
|
|
| 221 |
st.title("Task: Speech Instruction")
|
| 222 |
|
| 223 |
sum = ['Overall']
|
| 224 |
|
| 225 |
dataset_lists = ['OpenHermes-Audio-Test',
|
| 226 |
-
'ALPACA-Audio-Test'
|
|
|
|
| 227 |
|
| 228 |
filters_levelone = sum + dataset_lists
|
| 229 |
|
| 230 |
-
left, center, _, middle, right = st.columns([0.
|
| 231 |
|
| 232 |
with left:
|
| 233 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 234 |
|
| 235 |
if filter_1:
|
| 236 |
if filter_1 in sum:
|
| 237 |
-
sum_table_mulit_metrix('
|
| 238 |
else:
|
| 239 |
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 240 |
-
draw('su', '
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
|
|
|
| 243 |
st.title("Task: Audio Captioning")
|
| 244 |
|
| 245 |
filters_levelone = ['WavCaps-Test',
|
| 246 |
-
'AudioCaps-Test'
|
|
|
|
| 247 |
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
| 248 |
|
| 249 |
-
left, center, _, middle, right = st.columns([0.
|
| 250 |
|
| 251 |
with left:
|
| 252 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
|
@@ -255,10 +320,12 @@ def ac():
|
|
| 255 |
|
| 256 |
if filter_1 or metric:
|
| 257 |
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
|
| 258 |
-
draw('asu', '
|
|
|
|
|
|
|
| 259 |
|
| 260 |
|
| 261 |
-
def
|
| 262 |
st.title("Task: Audio Scene Question Answering")
|
| 263 |
|
| 264 |
sum = ['Overall']
|
|
@@ -269,44 +336,50 @@ def asqa():
|
|
| 269 |
|
| 270 |
filters_levelone = sum + dataset_lists
|
| 271 |
|
| 272 |
-
left, center, _, middle, right = st.columns([0.
|
| 273 |
|
| 274 |
with left:
|
| 275 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 276 |
|
| 277 |
if filter_1:
|
| 278 |
if filter_1 in sum:
|
| 279 |
-
sum_table_mulit_metrix('
|
| 280 |
else:
|
| 281 |
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 282 |
-
draw('asu', '
|
|
|
|
|
|
|
| 283 |
|
| 284 |
|
| 285 |
-
def
|
| 286 |
st.title("Task: Emotion Recognition")
|
| 287 |
|
| 288 |
sum = ['Overall']
|
| 289 |
|
| 290 |
-
dataset_lists = [
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
| 293 |
|
| 294 |
filters_levelone = sum + dataset_lists
|
| 295 |
|
| 296 |
-
left, center, _, middle, right = st.columns([0.
|
| 297 |
|
| 298 |
with left:
|
| 299 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 300 |
|
| 301 |
if filter_1:
|
| 302 |
if filter_1 in sum:
|
| 303 |
-
sum_table_mulit_metrix('
|
| 304 |
else:
|
| 305 |
-
dataset_contents(er_datasets[filter_1], metrics['
|
| 306 |
-
draw('vu', '
|
|
|
|
| 307 |
|
| 308 |
|
| 309 |
-
|
|
|
|
| 310 |
st.title("Task: Accent Recognition")
|
| 311 |
|
| 312 |
sum = ['Overall']
|
|
@@ -315,7 +388,7 @@ def ar():
|
|
| 315 |
|
| 316 |
filters_levelone = sum + dataset_lists
|
| 317 |
|
| 318 |
-
left, center, _, middle, right = st.columns([0.
|
| 319 |
|
| 320 |
with left:
|
| 321 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
|
@@ -323,14 +396,15 @@ def ar():
|
|
| 323 |
|
| 324 |
if filter_1:
|
| 325 |
if filter_1 in sum:
|
| 326 |
-
sum_table_mulit_metrix('
|
| 327 |
-
# sum_table('aR', 'llama3_70b_judge')
|
| 328 |
else:
|
| 329 |
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
|
| 330 |
-
draw('vu', '
|
|
|
|
|
|
|
| 331 |
|
| 332 |
|
| 333 |
-
def
|
| 334 |
st.title("Task: Gender Recognition")
|
| 335 |
|
| 336 |
sum = ['Overall']
|
|
@@ -340,47 +414,22 @@ def gr():
|
|
| 340 |
|
| 341 |
filters_levelone = sum + dataset_lists
|
| 342 |
|
| 343 |
-
left, center, _, middle, right = st.columns([0.
|
| 344 |
|
| 345 |
with left:
|
| 346 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 347 |
|
| 348 |
if filter_1:
|
| 349 |
if filter_1 in sum:
|
| 350 |
-
sum_table_mulit_metrix('
|
| 351 |
else:
|
| 352 |
-
dataset_contents(gr_datasets[filter_1], metrics['
|
| 353 |
-
draw('vu', '
|
| 354 |
|
| 355 |
|
| 356 |
-
def spt():
|
| 357 |
-
st.title("Task: Speech Translation")
|
| 358 |
-
|
| 359 |
-
sum = ['Overall']
|
| 360 |
-
dataset_lists = [
|
| 361 |
-
'Covost2-EN-ID-test',
|
| 362 |
-
'Covost2-EN-ZH-test',
|
| 363 |
-
'Covost2-EN-TA-test',
|
| 364 |
-
'Covost2-ID-EN-test',
|
| 365 |
-
'Covost2-ZH-EN-test',
|
| 366 |
-
'Covost2-TA-EN-test']
|
| 367 |
-
|
| 368 |
-
filters_levelone = sum + dataset_lists
|
| 369 |
-
|
| 370 |
-
left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 371 |
-
|
| 372 |
-
with left:
|
| 373 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 374 |
-
|
| 375 |
-
if filter_1:
|
| 376 |
-
if filter_1 in sum:
|
| 377 |
-
sum_table_mulit_metrix('st', ['bleu'])
|
| 378 |
-
else:
|
| 379 |
-
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
| 380 |
-
draw('su', 'ST', filter_1, 'bleu')
|
| 381 |
|
| 382 |
|
| 383 |
-
def
|
| 384 |
st.title("Task: Music Understanding - MCQ Questions")
|
| 385 |
|
| 386 |
sum = ['Overall']
|
|
@@ -390,17 +439,17 @@ def music_mcq():
|
|
| 390 |
|
| 391 |
filters_levelone = sum + dataset_lists
|
| 392 |
|
| 393 |
-
left, center, _, middle, right = st.columns([0.
|
| 394 |
|
| 395 |
with left:
|
| 396 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 397 |
|
| 398 |
if filter_1:
|
| 399 |
if filter_1 in sum:
|
| 400 |
-
sum_table_mulit_metrix('
|
| 401 |
else:
|
| 402 |
-
dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['
|
| 403 |
-
draw('vu', '
|
| 404 |
|
| 405 |
|
| 406 |
|
|
|
|
| 29 |
def dashboard():
|
| 30 |
|
| 31 |
with st.container():
|
| 32 |
+
st.title("Leaderboard for AudioBench")
|
| 33 |
|
| 34 |
st.markdown("""
|
| 35 |
+
[gh1]: https://github.com/AudioLLMs/AudioBench
|
| 36 |
+
[gh2]: https://github.com/AudioLLMs/AudioBench
|
| 37 |
+
**Toolkit:** [][gh1] |
|
| 38 |
+
[**Research Paper**](https://arxiv.org/abs/2406.16020) |
|
| 39 |
+
**Resource for AudioLLMs:** [][gh2]
|
| 40 |
""")
|
| 41 |
|
| 42 |
|
| 43 |
st.markdown("""
|
| 44 |
+
#### Recent updates
|
| 45 |
+
- **Jan. 2025**: Update the layout.
|
| 46 |
+
- **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
|
| 47 |
+
- **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
|
| 48 |
+
- **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
|
| 49 |
+
- **Aug. 2024**: Initial leaderboard is now online.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
""")
|
| 51 |
|
| 52 |
st.divider()
|
| 53 |
|
| 54 |
st.markdown("""
|
| 55 |
+
#### Evaluating Audio-based Large Language Models
|
| 56 |
|
| 57 |
- AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
|
| 58 |
+
- AudioBench is an evaluation benchmark that we continually improve and maintain.
|
| 59 |
|
| 60 |
Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
|
| 61 |
"""
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
with st.container():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
st.markdown('''
|
|
|
|
|
|
|
| 68 |
''')
|
| 69 |
|
| 70 |
st.markdown("###### :dart: Our Benchmark includes: ")
|
| 71 |
+
cols = st.columns(8)
|
| 72 |
cols[0].metric(label="Tasks", value=">8")
|
| 73 |
cols[1].metric(label="Datasets", value=">40")
|
| 74 |
cols[2].metric(label="Evaluated Models", value=">5")
|
| 75 |
+
|
|
|
|
| 76 |
st.divider()
|
| 77 |
with st.container():
|
| 78 |
+
left_co, right_co = st.columns([1, 0.7])
|
| 79 |
|
| 80 |
with left_co:
|
| 81 |
st.markdown("""
|
|
|
|
| 91 |
""")
|
| 92 |
|
| 93 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def asr_english():
|
| 97 |
+
st.title("Task: Automatic Speech Recognition - English")
|
| 98 |
|
| 99 |
sum = ['Overall']
|
| 100 |
dataset_lists = [
|
|
|
|
| 111 |
|
| 112 |
filters_levelone = sum + dataset_lists
|
| 113 |
|
| 114 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 115 |
|
| 116 |
with left:
|
| 117 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 118 |
|
| 119 |
if filter_1:
|
| 120 |
if filter_1 in sum:
|
| 121 |
+
sum_table_mulit_metrix('asr_english', ['wer'])
|
| 122 |
else:
|
| 123 |
dataset_contents(asr_datsets[filter_1], metrics['wer'])
|
| 124 |
+
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
|
| 125 |
+
|
| 126 |
|
| 127 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def asr_singlish():
|
| 131 |
st.title("Task: Automatic Speech Recognition - Singlish")
|
| 132 |
|
| 133 |
sum = ['Overall']
|
|
|
|
| 142 |
|
| 143 |
filters_levelone = sum + dataset_lists
|
| 144 |
|
| 145 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 146 |
|
| 147 |
with left:
|
| 148 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 149 |
|
| 150 |
if filter_1:
|
| 151 |
if filter_1 in sum:
|
| 152 |
+
sum_table_mulit_metrix('asr_singlish', ['wer'])
|
| 153 |
else:
|
| 154 |
dataset_contents(singlish_asr_datasets[filter_1], metrics['wer'])
|
| 155 |
+
draw('su', 'asr_singlish', filter_1, 'wer')
|
| 156 |
+
|
| 157 |
|
| 158 |
|
| 159 |
+
|
| 160 |
+
def asr_mandarin():
|
| 161 |
st.title("Task: Automatic Speech Recognition - Mandarin")
|
| 162 |
|
| 163 |
sum = ['Overall']
|
|
|
|
| 167 |
|
| 168 |
filters_levelone = sum + dataset_lists
|
| 169 |
|
| 170 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 171 |
|
| 172 |
with left:
|
| 173 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 174 |
|
| 175 |
if filter_1:
|
| 176 |
if filter_1 in sum:
|
| 177 |
+
sum_table_mulit_metrix('asr_mandarin', ['wer'])
|
| 178 |
else:
|
| 179 |
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
|
| 180 |
+
draw('su', 'asr_mandarin', filter_1, 'wer')
|
| 181 |
|
| 182 |
|
| 183 |
|
| 184 |
+
|
| 185 |
+
def speech_translation():
|
| 186 |
+
st.title("Task: Speech Translation")
|
| 187 |
|
| 188 |
sum = ['Overall']
|
| 189 |
+
dataset_lists = [
|
| 190 |
+
'CoVoST2-EN-ID-test',
|
| 191 |
+
'CoVoST2-EN-ZH-test',
|
| 192 |
+
'CoVoST2-EN-TA-test',
|
| 193 |
+
'CoVoST2-ID-EN-test',
|
| 194 |
+
'CoVoST2-ZH-EN-test',
|
| 195 |
+
'CoVoST2-TA-EN-test']
|
| 196 |
+
|
| 197 |
+
filters_levelone = sum + dataset_lists
|
| 198 |
+
|
| 199 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 200 |
+
|
| 201 |
+
with left:
|
| 202 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 203 |
+
|
| 204 |
+
if filter_1:
|
| 205 |
+
if filter_1 in sum:
|
| 206 |
+
sum_table_mulit_metrix('st', ['bleu'])
|
| 207 |
+
else:
|
| 208 |
+
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
| 209 |
+
draw('su', 'ST', filter_1, 'bleu')
|
| 210 |
|
|
|
|
| 211 |
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
|
| 214 |
+
def speech_question_answering_english():
|
| 215 |
+
st.title("Task: Spoken Question Answering - English")
|
| 216 |
|
| 217 |
+
sum = ['Overall']
|
| 218 |
+
|
| 219 |
+
dataset_lists = [
|
| 220 |
+
'CN-College-Listen-MCQ-Test',
|
| 221 |
+
'DREAM-TTS-MCQ-Test',
|
| 222 |
+
'SLUE-P2-SQA5-Test',
|
| 223 |
+
'Public-SG-Speech-QA-Test',
|
| 224 |
+
'Spoken-Squad-Test',
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
filters_levelone = sum + dataset_lists
|
| 228 |
+
|
| 229 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 230 |
|
| 231 |
with left:
|
| 232 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 233 |
|
| 234 |
if filter_1:
|
| 235 |
if filter_1 in sum:
|
| 236 |
+
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
|
| 237 |
+
|
| 238 |
+
#elif filter_1 in dataset_lists:
|
| 239 |
+
# dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 240 |
+
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
| 241 |
+
|
| 242 |
+
else:
|
| 243 |
+
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 244 |
+
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
|
| 249 |
+
def speech_question_answering_singlish():
|
| 250 |
+
st.title("Task: Spoken Question Answering - Singlish")
|
| 251 |
+
|
| 252 |
+
sum = ['Overall']
|
| 253 |
+
|
| 254 |
+
dataset_lists = [
|
| 255 |
+
'MNSC-PART3-SQA',
|
| 256 |
+
'MNSC-PART4-SQA',
|
| 257 |
+
'MNSC-PART5-SQA',
|
| 258 |
+
'MNSC-PART6-SQA',
|
| 259 |
+
]
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
filters_levelone = sum + dataset_lists
|
| 263 |
+
|
| 264 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 265 |
+
|
| 266 |
+
with left:
|
| 267 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 268 |
+
|
| 269 |
+
if filter_1:
|
| 270 |
+
if filter_1 in sum:
|
| 271 |
+
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
|
| 272 |
|
| 273 |
else:
|
| 274 |
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 275 |
+
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
|
| 276 |
+
|
| 277 |
+
|
| 278 |
|
| 279 |
+
|
| 280 |
+
def speech_instruction():
|
| 281 |
st.title("Task: Speech Instruction")
|
| 282 |
|
| 283 |
sum = ['Overall']
|
| 284 |
|
| 285 |
dataset_lists = ['OpenHermes-Audio-Test',
|
| 286 |
+
'ALPACA-Audio-Test',
|
| 287 |
+
]
|
| 288 |
|
| 289 |
filters_levelone = sum + dataset_lists
|
| 290 |
|
| 291 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 292 |
|
| 293 |
with left:
|
| 294 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 295 |
|
| 296 |
if filter_1:
|
| 297 |
if filter_1 in sum:
|
| 298 |
+
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
|
| 299 |
else:
|
| 300 |
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 301 |
+
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
|
| 302 |
+
|
| 303 |
+
|
| 304 |
|
| 305 |
+
|
| 306 |
+
def audio_captioning():
|
| 307 |
st.title("Task: Audio Captioning")
|
| 308 |
|
| 309 |
filters_levelone = ['WavCaps-Test',
|
| 310 |
+
'AudioCaps-Test',
|
| 311 |
+
]
|
| 312 |
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
| 313 |
|
| 314 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 315 |
|
| 316 |
with left:
|
| 317 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
|
|
|
| 320 |
|
| 321 |
if filter_1 or metric:
|
| 322 |
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
|
| 323 |
+
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
| 324 |
+
|
| 325 |
+
|
| 326 |
|
| 327 |
|
| 328 |
+
def audio_scene_question_answering():
|
| 329 |
st.title("Task: Audio Scene Question Answering")
|
| 330 |
|
| 331 |
sum = ['Overall']
|
|
|
|
| 336 |
|
| 337 |
filters_levelone = sum + dataset_lists
|
| 338 |
|
| 339 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 340 |
|
| 341 |
with left:
|
| 342 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 343 |
|
| 344 |
if filter_1:
|
| 345 |
if filter_1 in sum:
|
| 346 |
+
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
| 347 |
else:
|
| 348 |
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 349 |
+
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
| 350 |
+
|
| 351 |
+
|
| 352 |
|
| 353 |
|
| 354 |
+
def emotion_recognition():
|
| 355 |
st.title("Task: Emotion Recognition")
|
| 356 |
|
| 357 |
sum = ['Overall']
|
| 358 |
|
| 359 |
+
dataset_lists = [
|
| 360 |
+
'IEMOCAP-Emotion-Test',
|
| 361 |
+
'MELD-Sentiment-Test',
|
| 362 |
+
'MELD-Emotion-Test',
|
| 363 |
+
]
|
| 364 |
|
| 365 |
filters_levelone = sum + dataset_lists
|
| 366 |
|
| 367 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 368 |
|
| 369 |
with left:
|
| 370 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 371 |
|
| 372 |
if filter_1:
|
| 373 |
if filter_1 in sum:
|
| 374 |
+
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
|
| 375 |
else:
|
| 376 |
+
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 377 |
+
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
|
| 378 |
+
|
| 379 |
|
| 380 |
|
| 381 |
+
|
| 382 |
+
def accent_recognition():
|
| 383 |
st.title("Task: Accent Recognition")
|
| 384 |
|
| 385 |
sum = ['Overall']
|
|
|
|
| 388 |
|
| 389 |
filters_levelone = sum + dataset_lists
|
| 390 |
|
| 391 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 392 |
|
| 393 |
with left:
|
| 394 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
|
|
|
| 396 |
|
| 397 |
if filter_1:
|
| 398 |
if filter_1 in sum:
|
| 399 |
+
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
|
|
|
|
| 400 |
else:
|
| 401 |
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
|
| 402 |
+
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
|
| 403 |
+
|
| 404 |
+
|
| 405 |
|
| 406 |
|
| 407 |
+
def gender_recognition():
|
| 408 |
st.title("Task: Gender Recognition")
|
| 409 |
|
| 410 |
sum = ['Overall']
|
|
|
|
| 414 |
|
| 415 |
filters_levelone = sum + dataset_lists
|
| 416 |
|
| 417 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 418 |
|
| 419 |
with left:
|
| 420 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 421 |
|
| 422 |
if filter_1:
|
| 423 |
if filter_1 in sum:
|
| 424 |
+
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
|
| 425 |
else:
|
| 426 |
+
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 427 |
+
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
|
| 428 |
|
| 429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
|
| 432 |
+
def music_understanding():
|
| 433 |
st.title("Task: Music Understanding - MCQ Questions")
|
| 434 |
|
| 435 |
sum = ['Overall']
|
|
|
|
| 439 |
|
| 440 |
filters_levelone = sum + dataset_lists
|
| 441 |
|
| 442 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
| 443 |
|
| 444 |
with left:
|
| 445 |
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 446 |
|
| 447 |
if filter_1:
|
| 448 |
if filter_1 in sum:
|
| 449 |
+
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
|
| 450 |
else:
|
| 451 |
+
dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['llama3_70b_judge'])
|
| 452 |
+
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
| 453 |
|
| 454 |
|
| 455 |
|
app/summarization.py
CHANGED
|
@@ -21,7 +21,7 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
| 21 |
# combine chart data from multiple sources
|
| 22 |
chart_data = pd.DataFrame()
|
| 23 |
for metrics in metrics_lists:
|
| 24 |
-
folder = f"./
|
| 25 |
data_path = f'{folder}/{task_name.lower()}.csv'
|
| 26 |
one_chart_data = pd.read_csv(data_path).round(3)
|
| 27 |
if len(chart_data) == 0:
|
|
|
|
| 21 |
# combine chart data from multiple sources
|
| 22 |
chart_data = pd.DataFrame()
|
| 23 |
for metrics in metrics_lists:
|
| 24 |
+
folder = f"./results_organized/{metrics}"
|
| 25 |
data_path = f'{folder}/{task_name.lower()}.csv'
|
| 26 |
one_chart_data = pd.read_csv(data_path).round(3)
|
| 27 |
if len(chart_data) == 0:
|