Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,24 +4,24 @@ import torch
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import datetime
|
| 6 |
|
| 7 |
-
#
|
| 8 |
st.set_page_config(
|
| 9 |
-
page_title="Qwen2.5-Coder Chat",
|
| 10 |
page_icon="💬",
|
| 11 |
layout="wide"
|
| 12 |
)
|
| 13 |
|
| 14 |
-
# Set cache directory explicitly
|
| 15 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
| 16 |
|
| 17 |
# Initialize session state for conversation history
|
| 18 |
if 'messages' not in st.session_state:
|
| 19 |
st.session_state.messages = []
|
| 20 |
|
| 21 |
-
# Cache model loading
|
| 22 |
@st.cache_resource
|
| 23 |
def load_model_and_tokenizer():
|
| 24 |
-
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" #
|
| 25 |
|
| 26 |
# Load tokenizer
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
@@ -33,22 +33,14 @@ def load_model_and_tokenizer():
|
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
st.info(f"Using device: {device}")
|
| 35 |
|
| 36 |
-
# Load model
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
else:
|
| 45 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
-
model_name,
|
| 47 |
-
torch_dtype=torch.float32,
|
| 48 |
-
device_map={"": device},
|
| 49 |
-
trust_remote_code=True,
|
| 50 |
-
low_cpu_mem_usage=True
|
| 51 |
-
)
|
| 52 |
|
| 53 |
return tokenizer, model
|
| 54 |
|
|
@@ -62,8 +54,8 @@ with st.sidebar:
|
|
| 62 |
max_length = st.slider(
|
| 63 |
"Maximum Length",
|
| 64 |
min_value=64,
|
| 65 |
-
max_value=
|
| 66 |
-
value=
|
| 67 |
step=64,
|
| 68 |
help="Maximum number of tokens to generate"
|
| 69 |
)
|
|
@@ -71,8 +63,8 @@ with st.sidebar:
|
|
| 71 |
temperature = st.slider(
|
| 72 |
"Temperature",
|
| 73 |
min_value=0.1,
|
| 74 |
-
max_value=
|
| 75 |
-
value=0.
|
| 76 |
step=0.1,
|
| 77 |
help="Higher values make output more random, lower values more deterministic"
|
| 78 |
)
|
|
@@ -81,7 +73,7 @@ with st.sidebar:
|
|
| 81 |
"Top P",
|
| 82 |
min_value=0.1,
|
| 83 |
max_value=1.0,
|
| 84 |
-
value=0.
|
| 85 |
step=0.1,
|
| 86 |
help="Nucleus sampling: higher values consider more tokens, lower values are more focused"
|
| 87 |
)
|
|
@@ -99,11 +91,13 @@ except Exception as e:
|
|
| 99 |
st.stop()
|
| 100 |
|
| 101 |
# Response generation function
|
| 102 |
-
def generate_response(prompt, max_new_tokens=
|
| 103 |
"""Generate response from the model"""
|
| 104 |
try:
|
|
|
|
| 105 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 106 |
|
|
|
|
| 107 |
with torch.no_grad():
|
| 108 |
outputs = model.generate(
|
| 109 |
**inputs,
|
|
@@ -115,15 +109,16 @@ def generate_response(prompt, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
|
| 115 |
eos_token_id=tokenizer.eos_token_id,
|
| 116 |
)
|
| 117 |
|
|
|
|
| 118 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 119 |
-
return response[len(prompt):].strip() # Extract only the response
|
| 120 |
|
| 121 |
except Exception as e:
|
| 122 |
st.error(f"Error generating response: {str(e)}")
|
| 123 |
return None
|
| 124 |
|
| 125 |
# Display conversation history
|
| 126 |
-
for message in st.session_state.messages:
|
| 127 |
with st.chat_message(message["role"]):
|
| 128 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
| 129 |
|
|
@@ -144,10 +139,10 @@ if prompt := st.chat_input("Ask me anything about coding..."):
|
|
| 144 |
# Generate and display response
|
| 145 |
with st.chat_message("assistant"):
|
| 146 |
with st.spinner("Thinking..."):
|
| 147 |
-
# Prepare conversation context
|
| 148 |
conversation = "\n".join(
|
| 149 |
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
| 150 |
-
for msg in st.session_state.messages
|
| 151 |
) + "\nAssistant:"
|
| 152 |
|
| 153 |
response = generate_response(
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import datetime
|
| 6 |
|
| 7 |
+
# Page configuration
|
| 8 |
st.set_page_config(
|
| 9 |
+
page_title="💬 Qwen2.5-Coder Chat",
|
| 10 |
page_icon="💬",
|
| 11 |
layout="wide"
|
| 12 |
)
|
| 13 |
|
| 14 |
+
# Set cache directory explicitly for Hugging Face Spaces
|
| 15 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
| 16 |
|
| 17 |
# Initialize session state for conversation history
|
| 18 |
if 'messages' not in st.session_state:
|
| 19 |
st.session_state.messages = []
|
| 20 |
|
| 21 |
+
# Cache model loading to prevent re-loading each session
|
| 22 |
@st.cache_resource
|
| 23 |
def load_model_and_tokenizer():
|
| 24 |
+
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" # Smaller 3B model for efficiency
|
| 25 |
|
| 26 |
# Load tokenizer
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
st.info(f"Using device: {device}")
|
| 35 |
|
| 36 |
+
# Load model with optimizations for CPU
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
+
model_name,
|
| 39 |
+
torch_dtype=torch.float32 if device == "cpu" else torch.float16,
|
| 40 |
+
device_map="auto" if device == "cuda" else {"": device},
|
| 41 |
+
trust_remote_code=True,
|
| 42 |
+
low_cpu_mem_usage=True # Reduce memory usage for CPU
|
| 43 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
return tokenizer, model
|
| 46 |
|
|
|
|
| 54 |
max_length = st.slider(
|
| 55 |
"Maximum Length",
|
| 56 |
min_value=64,
|
| 57 |
+
max_value=1024, # Lowered for CPU
|
| 58 |
+
value=256, # Default setting for CPU
|
| 59 |
step=64,
|
| 60 |
help="Maximum number of tokens to generate"
|
| 61 |
)
|
|
|
|
| 63 |
temperature = st.slider(
|
| 64 |
"Temperature",
|
| 65 |
min_value=0.1,
|
| 66 |
+
max_value=1.5, # Lower range to make output more deterministic
|
| 67 |
+
value=0.5,
|
| 68 |
step=0.1,
|
| 69 |
help="Higher values make output more random, lower values more deterministic"
|
| 70 |
)
|
|
|
|
| 73 |
"Top P",
|
| 74 |
min_value=0.1,
|
| 75 |
max_value=1.0,
|
| 76 |
+
value=0.8,
|
| 77 |
step=0.1,
|
| 78 |
help="Nucleus sampling: higher values consider more tokens, lower values are more focused"
|
| 79 |
)
|
|
|
|
| 91 |
st.stop()
|
| 92 |
|
| 93 |
# Response generation function
|
| 94 |
+
def generate_response(prompt, max_new_tokens=256, temperature=0.5, top_p=0.8):
|
| 95 |
"""Generate response from the model"""
|
| 96 |
try:
|
| 97 |
+
# Tokenize the input
|
| 98 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 99 |
|
| 100 |
+
# Generate response
|
| 101 |
with torch.no_grad():
|
| 102 |
outputs = model.generate(
|
| 103 |
**inputs,
|
|
|
|
| 109 |
eos_token_id=tokenizer.eos_token_id,
|
| 110 |
)
|
| 111 |
|
| 112 |
+
# Decode and return response
|
| 113 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 114 |
+
return response[len(prompt):].strip() # Extract only the model's response
|
| 115 |
|
| 116 |
except Exception as e:
|
| 117 |
st.error(f"Error generating response: {str(e)}")
|
| 118 |
return None
|
| 119 |
|
| 120 |
# Display conversation history
|
| 121 |
+
for message in st.session_state.messages[-5:]: # Limit to last 5 messages for efficiency
|
| 122 |
with st.chat_message(message["role"]):
|
| 123 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
| 124 |
|
|
|
|
| 139 |
# Generate and display response
|
| 140 |
with st.chat_message("assistant"):
|
| 141 |
with st.spinner("Thinking..."):
|
| 142 |
+
# Prepare conversation context, limited to recent exchanges
|
| 143 |
conversation = "\n".join(
|
| 144 |
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
| 145 |
+
for msg in st.session_state.messages[-3:] # Send only the last 3 messages
|
| 146 |
) + "\nAssistant:"
|
| 147 |
|
| 148 |
response = generate_response(
|