Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,129 +2,130 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import datetime
|
| 5 |
-
import gc
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
# Enable memory efficient options
|
| 9 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
| 10 |
|
| 11 |
# Set page configuration
|
| 12 |
st.set_page_config(
|
| 13 |
page_title="Qwen2.5-Coder Chat",
|
| 14 |
page_icon="π¬",
|
| 15 |
-
layout="wide"
|
| 16 |
)
|
| 17 |
|
| 18 |
# Initialize session state
|
| 19 |
if 'messages' not in st.session_state:
|
| 20 |
st.session_state.messages = []
|
| 21 |
-
if 'model_loaded' not in st.session_state:
|
| 22 |
-
st.session_state.model_loaded = False
|
| 23 |
|
| 24 |
-
@st.cache_resource
|
| 25 |
def load_model_and_tokenizer():
|
| 26 |
try:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
# Load tokenizer first
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 32 |
model_name,
|
| 33 |
trust_remote_code=True
|
| 34 |
)
|
| 35 |
-
|
| 36 |
-
with st.spinner("π Loading model... (this may take a few minutes on CPU)"):
|
| 37 |
-
# Load model with 8-bit quantization for CPU
|
| 38 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
-
model_name,
|
| 40 |
-
device_map={"": "cpu"},
|
| 41 |
-
trust_remote_code=True,
|
| 42 |
-
low_cpu_mem_usage=True,
|
| 43 |
-
torch_dtype=torch.float32,
|
| 44 |
-
load_in_8bit=True # Enable 8-bit quantization
|
| 45 |
-
)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
st.session_state.model_loaded = True
|
| 55 |
return tokenizer, model
|
| 56 |
-
|
| 57 |
except Exception as e:
|
| 58 |
st.error(f"β Error loading model: {str(e)}")
|
| 59 |
-
|
| 60 |
|
| 61 |
-
def generate_response(prompt, model, tokenizer,
|
|
|
|
| 62 |
try:
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
prompt,
|
| 69 |
-
return_tensors="pt",
|
| 70 |
-
max_length=512,
|
| 71 |
-
truncation=True
|
| 72 |
-
).to("cpu")
|
| 73 |
-
|
| 74 |
-
# Generate with minimal parameters for CPU
|
| 75 |
-
with torch.no_grad(), st.spinner("π€ Thinking... (please be patient)"):
|
| 76 |
outputs = model.generate(
|
| 77 |
**inputs,
|
| 78 |
-
max_new_tokens=
|
| 79 |
-
temperature=
|
| 80 |
-
top_p=
|
| 81 |
do_sample=True,
|
| 82 |
pad_token_id=tokenizer.pad_token_id,
|
| 83 |
eos_token_id=tokenizer.eos_token_id,
|
| 84 |
-
|
| 85 |
-
|
| 86 |
)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
gc.collect()
|
| 90 |
-
|
| 91 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 92 |
return response[len(prompt):].strip()
|
| 93 |
-
|
| 94 |
except torch.cuda.OutOfMemoryError:
|
| 95 |
-
st.error("πΎ
|
| 96 |
return None
|
| 97 |
except Exception as e:
|
| 98 |
-
st.error(f"β Error: {str(e)}")
|
| 99 |
return None
|
| 100 |
|
| 101 |
# Main UI
|
| 102 |
st.title("π¬ Qwen2.5-Coder Chat")
|
| 103 |
|
| 104 |
-
# Sidebar
|
| 105 |
with st.sidebar:
|
| 106 |
st.header("βοΈ Settings")
|
| 107 |
|
|
|
|
| 108 |
max_length = st.slider(
|
| 109 |
-
"
|
| 110 |
min_value=64,
|
| 111 |
-
max_value=
|
| 112 |
-
value=
|
| 113 |
-
step=64
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
if st.button("ποΈ Clear Conversation"):
|
| 118 |
st.session_state.messages = []
|
| 119 |
st.rerun()
|
| 120 |
|
| 121 |
# Load model
|
| 122 |
-
|
| 123 |
-
tokenizer, model = load_model_and_tokenizer()
|
| 124 |
-
if model is None:
|
| 125 |
-
st.stop()
|
| 126 |
-
else:
|
| 127 |
tokenizer, model = load_model_and_tokenizer()
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# Display conversation history
|
| 130 |
for message in st.session_state.messages:
|
|
@@ -147,14 +148,19 @@ if prompt := st.chat_input("π Ask me anything about coding..."):
|
|
| 147 |
|
| 148 |
# Generate and display response
|
| 149 |
with st.chat_message("assistant"):
|
| 150 |
-
#
|
| 151 |
-
conversation =
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
response = generate_response(
|
| 154 |
conversation,
|
| 155 |
model,
|
| 156 |
tokenizer,
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
if response:
|
|
@@ -168,7 +174,4 @@ if prompt := st.chat_input("π Ask me anything about coding..."):
|
|
| 168 |
"timestamp": timestamp
|
| 169 |
})
|
| 170 |
else:
|
| 171 |
-
st.error("β Failed to generate response. Please try again with
|
| 172 |
-
|
| 173 |
-
# Clear memory after response
|
| 174 |
-
gc.collect()
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Set page configuration
|
| 7 |
st.set_page_config(
|
| 8 |
page_title="Qwen2.5-Coder Chat",
|
| 9 |
page_icon="π¬",
|
| 10 |
+
layout="wide"
|
| 11 |
)
|
| 12 |
|
| 13 |
# Initialize session state
|
| 14 |
if 'messages' not in st.session_state:
|
| 15 |
st.session_state.messages = []
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
@st.cache_resource
|
| 18 |
def load_model_and_tokenizer():
|
| 19 |
try:
|
| 20 |
+
# Display loading message
|
| 21 |
+
with st.spinner("π Loading model and tokenizer... This might take a few minutes..."):
|
| 22 |
+
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct"
|
| 23 |
+
|
| 24 |
# Load tokenizer first
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
model_name,
|
| 27 |
trust_remote_code=True
|
| 28 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Determine device and display info
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
st.info(f"π» Using device: {device}")
|
| 33 |
|
| 34 |
+
# Load model with appropriate settings
|
| 35 |
+
if device == "cuda":
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_name,
|
| 38 |
+
torch_dtype=torch.float16, # Use float16 for GPU
|
| 39 |
+
device_map="auto",
|
| 40 |
+
trust_remote_code=True
|
| 41 |
+
).eval() # Set to evaluation mode
|
| 42 |
+
else:
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
device_map={"": device},
|
| 46 |
+
trust_remote_code=True,
|
| 47 |
+
low_cpu_mem_usage=True
|
| 48 |
+
).eval() # Set to evaluation mode
|
| 49 |
|
|
|
|
| 50 |
return tokenizer, model
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
st.error(f"β Error loading model: {str(e)}")
|
| 53 |
+
raise e
|
| 54 |
|
| 55 |
+
def generate_response(prompt, model, tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
| 56 |
+
"""Generate response from the model with better error handling"""
|
| 57 |
try:
|
| 58 |
+
# Tokenize input
|
| 59 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 60 |
|
| 61 |
+
# Generate response with progress bar
|
| 62 |
+
with torch.no_grad(), st.spinner("π€ Thinking..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
outputs = model.generate(
|
| 64 |
**inputs,
|
| 65 |
+
max_new_tokens=max_new_tokens,
|
| 66 |
+
temperature=temperature,
|
| 67 |
+
top_p=top_p,
|
| 68 |
do_sample=True,
|
| 69 |
pad_token_id=tokenizer.pad_token_id,
|
| 70 |
eos_token_id=tokenizer.eos_token_id,
|
| 71 |
+
repetition_penalty=1.1,
|
| 72 |
+
no_repeat_ngram_size=3
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# Decode and return response
|
|
|
|
|
|
|
| 76 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 77 |
return response[len(prompt):].strip()
|
| 78 |
+
|
| 79 |
except torch.cuda.OutOfMemoryError:
|
| 80 |
+
st.error("πΎ GPU memory exceeded. Try reducing the maximum length or clearing the conversation.")
|
| 81 |
return None
|
| 82 |
except Exception as e:
|
| 83 |
+
st.error(f"β Error generating response: {str(e)}")
|
| 84 |
return None
|
| 85 |
|
| 86 |
# Main UI
|
| 87 |
st.title("π¬ Qwen2.5-Coder Chat")
|
| 88 |
|
| 89 |
+
# Sidebar settings
|
| 90 |
with st.sidebar:
|
| 91 |
st.header("βοΈ Settings")
|
| 92 |
|
| 93 |
+
# Model settings
|
| 94 |
max_length = st.slider(
|
| 95 |
+
"Maximum Length π",
|
| 96 |
min_value=64,
|
| 97 |
+
max_value=2048,
|
| 98 |
+
value=512,
|
| 99 |
+
step=64
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
temperature = st.slider(
|
| 103 |
+
"Temperature π‘οΈ",
|
| 104 |
+
min_value=0.1,
|
| 105 |
+
max_value=2.0,
|
| 106 |
+
value=0.7,
|
| 107 |
+
step=0.1
|
| 108 |
)
|
| 109 |
|
| 110 |
+
top_p = st.slider(
|
| 111 |
+
"Top P π",
|
| 112 |
+
min_value=0.1,
|
| 113 |
+
max_value=1.0,
|
| 114 |
+
value=0.9,
|
| 115 |
+
step=0.1
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Clear conversation button
|
| 119 |
if st.button("ποΈ Clear Conversation"):
|
| 120 |
st.session_state.messages = []
|
| 121 |
st.rerun()
|
| 122 |
|
| 123 |
# Load model
|
| 124 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
tokenizer, model = load_model_and_tokenizer()
|
| 126 |
+
except Exception as e:
|
| 127 |
+
st.error("β Failed to load model. Please check the logs and refresh the page.")
|
| 128 |
+
st.stop()
|
| 129 |
|
| 130 |
# Display conversation history
|
| 131 |
for message in st.session_state.messages:
|
|
|
|
| 148 |
|
| 149 |
# Generate and display response
|
| 150 |
with st.chat_message("assistant"):
|
| 151 |
+
# Prepare conversation context (limit to last 3 messages to prevent context overflow)
|
| 152 |
+
conversation = "\n".join(
|
| 153 |
+
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
| 154 |
+
for msg in st.session_state.messages[-3:]
|
| 155 |
+
) + "\nAssistant:"
|
| 156 |
|
| 157 |
response = generate_response(
|
| 158 |
conversation,
|
| 159 |
model,
|
| 160 |
tokenizer,
|
| 161 |
+
max_new_tokens=max_length,
|
| 162 |
+
temperature=temperature,
|
| 163 |
+
top_p=top_p
|
| 164 |
)
|
| 165 |
|
| 166 |
if response:
|
|
|
|
| 174 |
"timestamp": timestamp
|
| 175 |
})
|
| 176 |
else:
|
| 177 |
+
st.error("β Failed to generate response. Please try again with different settings.")
|
|
|
|
|
|
|
|
|