Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import datetime
|
| 5 |
|
| 6 |
# Page configuration
|
|
@@ -17,28 +17,34 @@ if 'messages' not in st.session_state:
|
|
| 17 |
# Cache the model loading
|
| 18 |
@st.cache_resource
|
| 19 |
def load_model_and_tokenizer():
|
| 20 |
-
model_name = "Qwen/Qwen2.5-Coder-
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
bnb_config = BitsAndBytesConfig(
|
| 24 |
-
load_in_8bit=True,
|
| 25 |
-
bnb_4bit_quant_type="nf4",
|
| 26 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 27 |
-
bnb_4bit_use_double_quant=False,
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
# Load tokenizer and model
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 32 |
model_name,
|
| 33 |
trust_remote_code=True
|
| 34 |
)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
return tokenizer, model
|
| 44 |
|
|
@@ -52,7 +58,7 @@ with st.sidebar:
|
|
| 52 |
max_length = st.slider(
|
| 53 |
"Maximum Length",
|
| 54 |
min_value=64,
|
| 55 |
-
max_value=
|
| 56 |
value=512,
|
| 57 |
step=64,
|
| 58 |
help="Maximum number of tokens to generate"
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import datetime
|
| 5 |
|
| 6 |
# Page configuration
|
|
|
|
| 17 |
# Cache the model loading
|
| 18 |
@st.cache_resource
|
| 19 |
def load_model_and_tokenizer():
|
| 20 |
+
model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" # Using smaller 7B model
|
| 21 |
|
| 22 |
+
# Load tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 24 |
model_name,
|
| 25 |
trust_remote_code=True
|
| 26 |
)
|
| 27 |
+
|
| 28 |
+
# Determine device
|
| 29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
st.info(f"Using device: {device}")
|
| 31 |
+
|
| 32 |
+
# Load model with appropriate settings for CPU/GPU
|
| 33 |
+
if device == "cuda":
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
+
model_name,
|
| 36 |
+
torch_dtype=torch.float16,
|
| 37 |
+
device_map="auto",
|
| 38 |
+
trust_remote_code=True
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
+
model_name,
|
| 43 |
+
torch_dtype=torch.float32,
|
| 44 |
+
device_map={"": device},
|
| 45 |
+
trust_remote_code=True,
|
| 46 |
+
low_cpu_mem_usage=True
|
| 47 |
+
)
|
| 48 |
|
| 49 |
return tokenizer, model
|
| 50 |
|
|
|
|
| 58 |
max_length = st.slider(
|
| 59 |
"Maximum Length",
|
| 60 |
min_value=64,
|
| 61 |
+
max_value=2048, # Reduced for CPU usage
|
| 62 |
value=512,
|
| 63 |
step=64,
|
| 64 |
help="Maximum number of tokens to generate"
|