Spaces:
Running
Running
lixuejing
commited on
Commit
·
beb73b8
1
Parent(s):
caa7799
fix
Browse files- app.py +46 -46
- src/about.py +10 -10
app.py
CHANGED
|
@@ -230,29 +230,29 @@ with demo:
|
|
| 230 |
# value=[],
|
| 231 |
# interactive=True
|
| 232 |
# )
|
| 233 |
-
with gr.Column(min_width=320):
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
|
| 257 |
|
| 258 |
leaderboard_table = gr.components.Dataframe(
|
|
@@ -359,29 +359,29 @@ with demo:
|
|
| 359 |
# value=[],
|
| 360 |
# interactive=True
|
| 361 |
# )
|
| 362 |
-
with gr.Column(min_width=320):
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
|
| 386 |
|
| 387 |
leaderboard_table = gr.components.Dataframe(
|
|
|
|
| 230 |
# value=[],
|
| 231 |
# interactive=True
|
| 232 |
# )
|
| 233 |
+
#with gr.Column(min_width=320):
|
| 234 |
+
# #with gr.Box(elem_id="box-filter"):
|
| 235 |
+
# filter_columns_type = gr.CheckboxGroup(
|
| 236 |
+
# label="Model types",
|
| 237 |
+
# choices=[t.to_str() for t in ModelType],
|
| 238 |
+
# value=[t.to_str() for t in ModelType],
|
| 239 |
+
# interactive=True,
|
| 240 |
+
# elem_id="filter-columns-type",
|
| 241 |
+
# )
|
| 242 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
| 243 |
+
# label="Precision",
|
| 244 |
+
# choices=[i.value.name for i in Precision],
|
| 245 |
+
# value=[i.value.name for i in Precision],
|
| 246 |
+
# interactive=True,
|
| 247 |
+
# elem_id="filter-columns-precision",
|
| 248 |
+
# )
|
| 249 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 250 |
+
# label="Model sizes (in billions of parameters)",
|
| 251 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 252 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 253 |
+
# interactive=True,
|
| 254 |
+
# elem_id="filter-columns-size",
|
| 255 |
+
# )
|
| 256 |
|
| 257 |
|
| 258 |
leaderboard_table = gr.components.Dataframe(
|
|
|
|
| 359 |
# value=[],
|
| 360 |
# interactive=True
|
| 361 |
# )
|
| 362 |
+
#with gr.Column(min_width=320):
|
| 363 |
+
# #with gr.Box(elem_id="box-filter"):
|
| 364 |
+
# filter_columns_type = gr.CheckboxGroup(
|
| 365 |
+
# label="Model types",
|
| 366 |
+
# choices=[t.to_str() for t in ModelType],
|
| 367 |
+
# value=[t.to_str() for t in ModelType],
|
| 368 |
+
# interactive=True,
|
| 369 |
+
# elem_id="filter-columns-type",
|
| 370 |
+
# )
|
| 371 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
| 372 |
+
# label="Precision",
|
| 373 |
+
# choices=[i.value.name for i in Precision],
|
| 374 |
+
# value=[i.value.name for i in Precision],
|
| 375 |
+
# interactive=True,
|
| 376 |
+
# elem_id="filter-columns-precision",
|
| 377 |
+
# )
|
| 378 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 379 |
+
# label="Model sizes (in billions of parameters)",
|
| 380 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 381 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 382 |
+
# interactive=True,
|
| 383 |
+
# elem_id="filter-columns-size",
|
| 384 |
+
# )
|
| 385 |
|
| 386 |
|
| 387 |
leaderboard_table = gr.components.Dataframe(
|
src/about.py
CHANGED
|
@@ -13,15 +13,15 @@ class Task:
|
|
| 13 |
class Tasks(Enum):
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
Where2Place = Task("Where2Place", "overall", "Where2Place")
|
| 16 |
-
blink_val_ev= Task("blink_val_ev", "overall", "
|
| 17 |
-
cv_bench_test = Task("cv_bench_test", "overall", "
|
| 18 |
-
robo_spatial_home_all = Task("robo_spatial_home_all", "overall", "
|
| 19 |
-
embspatial_bench = Task("embspatial_bench", "overall", "
|
| 20 |
-
all_angles_bench = Task("all_angles_bench", "overall", "
|
| 21 |
-
vsi_bench_tiny = Task("vsi_bench_tiny", "overall", "
|
| 22 |
SAT = Task("SAT", "overall", "SAT")
|
| 23 |
-
egoplan_bench2 = Task("egoplan_bench2", "overall", "
|
| 24 |
-
erqa = Task("erqa", "overall", "
|
| 25 |
|
| 26 |
class Quotas(Enum):
|
| 27 |
Perception = Task("Perception", "overall", "Perception")
|
|
@@ -38,7 +38,7 @@ class Quotas(Enum):
|
|
| 38 |
SpatialReasoning_se = Task("SpatialReasoning", "Size estimation", "SR_Se")
|
| 39 |
Prediction = Task("Prediction", "overall", "Prediction")
|
| 40 |
Prediction_T = Task("Prediction", "Trajectory", "P_T")
|
| 41 |
-
Prediction_F = Task("Prediction", "Future prediction",P_Fp")
|
| 42 |
Planning = Task("Planning", "overall", "Planning")
|
| 43 |
Planning_G = Task("Planning", "Goal Decomposition", "P_GD")
|
| 44 |
Planning_N = Task("Planning", "Navigation", "P_N")
|
|
@@ -80,7 +80,7 @@ We hope to promote a more open ecosystem for embodied model developers to partic
|
|
| 80 |
|
| 81 |
# How it works
|
| 82 |
|
| 83 |
-
## Embodied
|
| 84 |
FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
|
| 85 |
|
| 86 |
- 灵活的架构:支持多个多模态模型和评估任务,包括VQA、图像检索、文本到图像等。
|
|
|
|
| 13 |
class Tasks(Enum):
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
Where2Place = Task("Where2Place", "overall", "Where2Place")
|
| 16 |
+
blink_val_ev= Task("blink_val_ev", "overall", "Blink")
|
| 17 |
+
cv_bench_test = Task("cv_bench_test", "overall", "CVBench")
|
| 18 |
+
robo_spatial_home_all = Task("robo_spatial_home_all", "overall", "RoboSpatial-Home")
|
| 19 |
+
embspatial_bench = Task("embspatial_bench", "overall", "EmbspatialBench")
|
| 20 |
+
all_angles_bench = Task("all_angles_bench", "overall", "All-Angles Bench")
|
| 21 |
+
vsi_bench_tiny = Task("vsi_bench_tiny", "overall", "VSI-Bench")
|
| 22 |
SAT = Task("SAT", "overall", "SAT")
|
| 23 |
+
egoplan_bench2 = Task("egoplan_bench2", "overall", "EgoPlan-Bench2")
|
| 24 |
+
erqa = Task("erqa", "overall", "ERQA")
|
| 25 |
|
| 26 |
class Quotas(Enum):
|
| 27 |
Perception = Task("Perception", "overall", "Perception")
|
|
|
|
| 38 |
SpatialReasoning_se = Task("SpatialReasoning", "Size estimation", "SR_Se")
|
| 39 |
Prediction = Task("Prediction", "overall", "Prediction")
|
| 40 |
Prediction_T = Task("Prediction", "Trajectory", "P_T")
|
| 41 |
+
Prediction_F = Task("Prediction", "Future prediction","P_Fp")
|
| 42 |
Planning = Task("Planning", "overall", "Planning")
|
| 43 |
Planning_G = Task("Planning", "Goal Decomposition", "P_GD")
|
| 44 |
Planning_N = Task("Planning", "Navigation", "P_N")
|
|
|
|
| 80 |
|
| 81 |
# How it works
|
| 82 |
|
| 83 |
+
## Embodied Verse tool - FlagEvalMM
|
| 84 |
FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
|
| 85 |
|
| 86 |
- 灵活的架构:支持多个多模态模型和评估任务,包括VQA、图像检索、文本到图像等。
|