Spaces:
Build error
Build error
| import asyncio | |
| import json | |
| import os | |
| import httpx | |
| import pandas as pd | |
| from evaluation.benchmarks.gorilla.utils import encode_question, get_data_for_hub | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| codeact_user_response, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| get_parser, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import MessageAction | |
| from openhands.utils.async_utils import call_async_from_sync | |
| AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
| 'CodeActAgent': codeact_user_response, | |
| } | |
| AGENT_CLS_TO_INST_SUFFIX = { | |
| 'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n' | |
| } | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'python:3.12-bookworm' | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ) -> EvalOutput: | |
| config = get_config(metadata) | |
| instance_id = instance['question_id'] | |
| question = instance['question'] | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance_id, log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance_id}.') | |
| # Prepare instruction | |
| instruction = encode_question(question, instance['hub']) | |
| instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
| # NOTE: You can actually set slightly different instruction for different agents | |
| instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
| # logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'}) | |
| # Here's how you can run the agent (similar to the `main` function) and get the final task state | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
| metadata.agent_class | |
| ), | |
| ) | |
| ) | |
| # ======= Attempt to evaluate the agent's edits ======= | |
| # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
| # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| # retrieve the last message from the agent | |
| last_agent_message = state.get_last_agent_message() | |
| model_answer_raw = last_agent_message.content if last_agent_message else '' | |
| # attempt to parse model_answer | |
| ast_eval_fn = instance['ast_eval'] | |
| correct, hallucination = ast_eval_fn(instance_id, model_answer_raw) | |
| metrics = state.metrics.get() if state.metrics else None | |
| logger.info( | |
| f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}' | |
| ) | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| output = EvalOutput( | |
| instance_id=instance_id, | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result={ | |
| 'text': model_answer_raw, | |
| 'correct': correct, | |
| 'hallucination': hallucination, | |
| }, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| parser = get_parser() | |
| parser.add_argument( | |
| '--hubs', | |
| type=str, | |
| help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.', | |
| default='hf,torch,tf', | |
| ) | |
| args, _ = parser.parse_known_args() | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| hubs = args.hubs.split(',') | |
| if len(hubs) == 0: | |
| raise ValueError('Please choose at least one from hf, torch, and tf for hubs.') | |
| dfs = [] | |
| for hub in hubs: | |
| logger.info(f'Evaluating APIBench {hub} test') | |
| df = get_data_for_hub(hub) | |
| dfs.append(df) | |
| dataset_df = pd.concat(dfs) | |
| dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True) | |
| metadata = make_metadata( | |
| llm_config=llm_config, | |
| dataset_name=f'gorilla-{hub}', | |
| agent_class=args.agent_cls, | |
| max_iterations=args.max_iterations, | |
| eval_note=args.eval_note, | |
| eval_output_dir=args.eval_output_dir, | |
| data_split=args.data_split, | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| dataset = prepare_dataset( | |
| dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit | |
| ) | |
| file_path = os.path.join(os.path.dirname(__file__), 'my-languages.so') | |
| # Check if the file exists | |
| if not os.path.exists(file_path): | |
| url = 'https://raw.githubusercontent.com/ShishirPatil/gorilla/main/eval/eval-scripts/codebleu/parser/my-languages.so' | |
| response = httpx.get(url) | |
| with open(file_path, 'wb') as f: | |
| f.write(response.content) | |
| else: | |
| print('File already exists, skipping download.') | |
| run_evaluation( | |
| dataset=dataset, | |
| metadata=metadata, | |
| output_file=output_file, | |
| num_workers=args.eval_num_workers, | |
| process_instance_func=process_instance, | |
| ) | |
| # Read the output file and calculate the accuracy | |
| total_correct = 0 | |
| total_hallucination = 0 | |
| output = [] | |
| with open(output_file, 'r') as f: | |
| for line in f: | |
| data = json.loads(line) | |
| if data['test_result']['correct']: | |
| total_correct += 1 | |
| if data['test_result']['hallucination']: | |
| total_hallucination += 1 | |
| output.append(data) | |
| logger.info( | |
| f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}' | |
| ) | |