Spaces:
Build error
Build error
| """Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of | |
| Large Language Models (LLMs) in leveraging existing functions in open-source libraries for | |
| machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large | |
| Language Models for Code Generation in Repository-Level Machine Learning Tasks" | |
| (https://arxiv.org/abs/2311.09835). | |
| Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench | |
| for more details on the dataset and docker image used in this evaluation script. | |
| TODOs: | |
| - Support additional evaluation settings, such as providing raw README content or using a | |
| retriever to extract relevant segments. | |
| - Clean up the code and docker image used for evaluation. | |
| """ | |
| import asyncio | |
| import os | |
| from typing import Any | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| codeact_user_response, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| get_parser, | |
| load_openhands_config, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import CmdRunAction, MessageAction | |
| from openhands.events.observation import CmdOutputObservation | |
| from openhands.runtime.base import Runtime | |
| from openhands.utils.async_utils import call_async_from_sync | |
| config = load_openhands_config() | |
| AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
| 'CodeActAgent': codeact_user_response, | |
| } | |
| AGENT_CLS_TO_INST_SUFFIX = { | |
| 'CodeActAgent': 'When you think you have completed the task, please finish the interaction using the "finish" tool.\n' | |
| } | |
| ID2CONDA = { | |
| 1: 'dgl_DS', | |
| 2: 'bert_DS', | |
| 3: 'lavis_DS', | |
| 4: 'if_DS', | |
| 5: 'V2V_DS', | |
| 6: 'esm_DS', | |
| 7: 'OP_DS', | |
| 8: 'TSL_DS', | |
| 9: 'EAP_DS', | |
| 10: 'PG_DS', | |
| 11: 'PIM_DS', | |
| 12: 'AD2_DS', | |
| 13: 'L3_DS', | |
| 14: 'MZ2_DS', | |
| 15: 'GSA2_DS', | |
| } | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'public.ecr.aws/i5g0m1f6/ml-bench' | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def initialize_runtime( | |
| runtime: Runtime, | |
| instance: pd.Series, # this argument is not required | |
| ): | |
| """Initialize the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| # Set instance id | |
| action = CmdRunAction(command='mkdir -p /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| # Set up the task environment | |
| action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| repo_url = instance['github'] | |
| repo_name = repo_url.split('/')[-1] | |
| action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| # Navigate to the task's code path | |
| task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
| action = CmdRunAction(command=f'cd {task_path}') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
| def complete_runtime( | |
| runtime: Runtime, | |
| instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name | |
| ) -> dict[str, Any]: | |
| """Complete the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| If you need to do something in the sandbox to get the correctness metric after | |
| the agent has run, modify this function. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| repo_url = instance['github'] | |
| repo_name = repo_url.split('/')[-1] | |
| task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
| # Evaluate the agent's script | |
| eval_script = os.path.join(task_path, 'run.sh') | |
| logger.info(f'Running evaluation script: {eval_script}') | |
| action = CmdRunAction(command=f'cat {eval_script}') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| if obs.exit_code == 0: | |
| eval_script_content = obs.content | |
| else: | |
| logger.error(f'Error reading evaluation script: {obs.content}') | |
| eval_script_content = '' | |
| action = CmdRunAction( | |
| command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}', | |
| timeout=600, | |
| ) | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| if obs.exit_code == 0: | |
| eval_output = obs.content | |
| else: | |
| logger.error(f'Error running evaluation script: {obs.content}') | |
| eval_output = '' | |
| outputs = { | |
| 'eval_script_content': eval_script_content, | |
| 'eval_output': eval_output, | |
| } | |
| if obs.exit_code != 0 and obs.exit_code != 124: | |
| logger.warning(f'Evaluation script failed with exit code {obs.exit_code}') | |
| logger.warning(f'Output: {eval_output}') | |
| outputs['success'] = int( | |
| 'KeyboardInterrupt' in eval_output | |
| ) # super-dainiu: assume ``KeyboardInterrupt`` is a success as is done in ML-Bench | |
| else: | |
| logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}') | |
| logger.info(f'Output: {eval_output}') | |
| outputs['success'] = 1 | |
| outputs['eval_exit_code'] = obs.exit_code | |
| logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
| return outputs | |
| def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True): | |
| config = get_config(metadata) | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
| repo_url = instance['github'] | |
| repo_name = repo_url.split('/')[-1] | |
| task_path = os.path.join('/workspace', repo_name, instance['path'][2:]) | |
| # Prepare the task instruction | |
| instruction = ( | |
| f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n' | |
| f'{instance["instruction"]}\n\n' | |
| 'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n' | |
| f'You can find the task repo at: {task_path}\n\n' | |
| + ( | |
| 'Here is the prefix code for the task:\n' | |
| '```bash\n' | |
| f'{instance["prefix_code"]}\n' | |
| '```\n\n' | |
| if instance['prefix_code'] | |
| else '' | |
| ) | |
| + 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).' | |
| ) | |
| instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| initialize_runtime(runtime, instance) | |
| # Run the agent | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
| metadata.agent_class | |
| ), | |
| ) | |
| ) | |
| assert state is not None | |
| metrics = state.metrics.get() if state.metrics else {} | |
| test_result = complete_runtime(runtime) | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=instance['instance_id'], | |
| instance=instance.to_dict(), | |
| instruction=instruction, | |
| metadata=metadata, | |
| history=histories, | |
| test_result=test_result, | |
| metrics=metrics, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| parser = get_parser() | |
| parser.add_argument( | |
| '-s', | |
| '--eval-split', | |
| type=str, | |
| default='quarter', | |
| choices=['full', 'quarter'], | |
| help='data split to evaluate on, either full or quarter', | |
| ) | |
| args, _ = parser.parse_known_args() | |
| data_split = args.eval_split | |
| ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas() | |
| ml_bench.rename(columns={'id': 'instance_id'}, inplace=True) | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config, | |
| f'ml-bench-{data_split}', | |
| args.agent_cls, | |
| args.max_iterations, | |
| args.eval_note, | |
| args.eval_output_dir, | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit) | |
| run_evaluation( | |
| instances, metadata, output_file, args.eval_num_workers, process_instance | |
| ) | |