Spaces:
Build error
Build error
| import asyncio | |
| import os | |
| import re | |
| import nltk | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| parse_arguments, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import MessageAction | |
| from openhands.utils.async_utils import call_async_from_sync | |
| # Only CodeActAgent can delegate to BrowsingAgent | |
| SUPPORTED_AGENT_CLS = {'CodeActAgent'} | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| assert metadata.max_iterations == 1, ( | |
| 'max_iterations must be 1 for browsing delegation evaluation.' | |
| ) | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'python:3.12-bookworm' | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ) -> EvalOutput: | |
| config = get_config(metadata) | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance.instance_id}.') | |
| instruction = ( | |
| f'You can delegate browsing tasks to a browser agent. ' | |
| f"For example, for query 'Who is the president of the United States?', you can delegate the task to a browser agent via <execute_browse> Who is the president of the United States? </execute_browse>.\n" | |
| f'Now, solve the following query: "{instance.instruction}"\n' | |
| f'NOTE: You should copy the "query" as is into the <execute_browse> tag. DO NOT change ANYTHING in the query.' | |
| ) | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| ) | |
| ) | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| metrics = state.metrics.get() if state.metrics else None | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # find the last delegate action | |
| last_delegate_action = None | |
| result = {} | |
| for action, _ in histories: | |
| if action['action'] == 'delegate': | |
| last_delegate_action = action | |
| instruction_for_delegate = action['args']['inputs']['task'] | |
| # parse `browse_actions` from `instruction_for_delegate` | |
| # task = f'{thought}. I should start with: {browse_actions}' | |
| instruction_for_delegate = re.search( | |
| r'I should start with: (.*)', instruction_for_delegate | |
| ).group(1) | |
| # calculate the edit distance between the instance.instruction and the instruction_for_delegate | |
| edit_distance = nltk.edit_distance( | |
| instance.instruction, instruction_for_delegate | |
| ) | |
| is_exact_match = ( | |
| instance.instruction.strip() == instruction_for_delegate.strip() | |
| ) | |
| result['edit_distance'] = edit_distance | |
| result['is_exact_match'] = is_exact_match | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=instance.instance_id, | |
| instruction=instruction, | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result={ | |
| 'query': instance.instruction, | |
| 'action': last_delegate_action, | |
| 'result': result, | |
| }, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| args = parse_arguments() | |
| dataset = load_dataset('OpenHands/eval-browsing-instructions') | |
| dataset = dataset['train'].to_pandas() | |
| assert dataset.columns.tolist() == ['instance_id', 'instruction'] | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config, | |
| 'browsing_delegation', | |
| args.agent_cls, | |
| args.max_iterations, | |
| args.eval_note, | |
| args.eval_output_dir, | |
| ) | |
| if metadata.agent_class not in SUPPORTED_AGENT_CLS: | |
| raise ValueError( | |
| f'Agent class {metadata.agent_class} not supported with AgentDelegation.' | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| instances = prepare_dataset(dataset, output_file, args.eval_n_limit) | |
| run_evaluation( | |
| instances, | |
| metadata, | |
| output_file, | |
| args.eval_num_workers, | |
| process_instance, | |
| ) | |