Spaces:
Build error
Build error
| import asyncio | |
| import os | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| codeact_user_response, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| get_parser, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import ( | |
| AgentFinishAction, | |
| CmdRunAction, | |
| IPythonRunCellAction, | |
| MessageAction, | |
| ) | |
| from openhands.events.observation import CmdOutputObservation | |
| from openhands.runtime.base import Runtime | |
| from openhands.utils.async_utils import call_async_from_sync | |
| AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
| 'CodeActAgent': codeact_user_response, | |
| } | |
| AGENT_CLS_TO_INST_SUFFIX = { | |
| 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
| } | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'xingyaoww/od-eval-logic-reasoning:v1.0' | |
| sandbox_config.runtime_extra_deps = ( | |
| '$OH_INTERPRETER_PATH -m pip install scitools-pyke' | |
| ) | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def get_choice(answer_str): | |
| choices = [ | |
| 'A', | |
| 'B', | |
| 'C', | |
| 'D', | |
| 'E', | |
| 'F', | |
| 'G', | |
| 'H', | |
| 'A)', | |
| 'B)', | |
| 'C)', | |
| 'D)', | |
| 'E)', | |
| 'F)', | |
| 'G)', | |
| 'H)', | |
| 'A.', | |
| 'B.', | |
| 'C.', | |
| 'D.', | |
| 'E.', | |
| 'F.', | |
| 'G.', | |
| 'H.', | |
| ] | |
| for c in choices: | |
| if answer_str.startswith(c): | |
| return c.replace(')', '') | |
| if answer_str.startswith(':'): | |
| return answer_str.replace(':', '').replace('.', '').strip() | |
| return None | |
| def get_test_result( | |
| model_answer: str, | |
| ground_truth: str, | |
| ) -> dict[str, bool]: | |
| gold_answer = ground_truth.replace('(', '').replace(')', '').strip() | |
| answer_str = model_answer if model_answer is not None else '' | |
| prediction = get_choice(answer_str) | |
| indicators = [ | |
| 'the correct option is', | |
| 'the correct answer is', | |
| 'The correct answer is', | |
| 'The correct option is', | |
| 'the answer is', | |
| ] | |
| if prediction is None: | |
| for indicator in indicators: | |
| if answer_str.find(indicator) >= 0: | |
| answer_str = answer_str.split(indicator)[1].strip() | |
| prediction = get_choice(answer_str) | |
| break | |
| isTrue = prediction == gold_answer | |
| test_result = {'result': isTrue} | |
| return test_result | |
| CUR_EVAL_DIR = os.path.dirname(__file__) | |
| def initialize_runtime( | |
| runtime: Runtime, | |
| instance: pd.Series, # this argument is not required | |
| ): | |
| """Initialize the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| # Set instance id | |
| action = CmdRunAction(command='mkdir -p /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| action = CmdRunAction(command='cd /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| # copy logic_inference.py to /workspace | |
| runtime.copy_to(os.path.join(CUR_EVAL_DIR, 'logic_inference.py'), '/workspace') | |
| # check if the file exists | |
| obs = runtime.run_action(CmdRunAction(command='ls /workspace')) | |
| assert obs.exit_code == 0 | |
| assert 'logic_inference.py' in obs.content | |
| runtime.add_env_vars({'DATASET_NAME': metadata.dataset}) | |
| action = CmdRunAction(command='mkdir -p /workspace/.cache_program') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| action = IPythonRunCellAction(code='%pip install scitools-pyke') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| ipynb_obs = runtime.run_action(action) | |
| logger.info(ipynb_obs, extra={'msg_type': 'OBSERVATION'}) | |
| logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
| # Prepare instruction | |
| with open(os.path.join(CUR_EVAL_DIR, 'instruction.txt'), 'r') as f: | |
| INSTRUCTION_TEMPLATE = f.read() | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ): | |
| config = get_config(metadata) | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
| instance_logic_programs = instance['raw_logic_programs'][0].strip() | |
| instruction = ( | |
| INSTRUCTION_TEMPLATE.replace('[[dataset_name]]', dataset_name) | |
| .replace('[[logic_programs]]', instance_logic_programs) | |
| .replace('[[logic_inference_path.py]]', '/workspace/logic_inference.py') | |
| ) | |
| # NOTE: You can actually set slightly different instruction for different agents | |
| instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| initialize_runtime(runtime, instance) | |
| # Here's how you can run the agent (similar to the `main` function) and get the final task state | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
| metadata.agent_class | |
| ), | |
| ) | |
| ) | |
| # ======= Attempt to evaluate the agent's edits ======= | |
| # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
| # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| final_message = '' | |
| for event in reversed(state.history): | |
| if isinstance(event, AgentFinishAction): | |
| final_message = event.thought | |
| break | |
| elif isinstance(event, MessageAction): | |
| final_message = event.content | |
| break | |
| final_message = final_message.strip("'") | |
| logger.info( | |
| f'Predicted answer: {final_message}, Ground truth: {instance["answer"]}' | |
| ) | |
| test_result = get_test_result( | |
| model_answer=final_message, ground_truth=instance['answer'] | |
| ) | |
| test_result['final_message'] = final_message | |
| metrics = state.metrics.get() if state.metrics else None | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=instance['instance_id'], | |
| instruction=instruction, | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result=test_result, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| parser = get_parser() | |
| parser.add_argument( | |
| '--dataset', | |
| type=str, | |
| help='the logic reasoning dataset to evaluate on {ProntoQA, ProofWriter}', | |
| default='ProofWriter', | |
| ) | |
| parser.add_argument( | |
| '--data-split', | |
| type=str, | |
| help='data split to evaluate on {validation}', # right now we only support validation split | |
| default='validation', | |
| ) | |
| args, _ = parser.parse_known_args() | |
| dataset_name = args.dataset | |
| data_split = args.data_split | |
| dataset = load_dataset(f'renma/{dataset_name}') | |
| dataset_df = dataset[data_split].to_pandas() | |
| dataset_df.rename(columns={'id': 'instance_id'}, inplace=True) | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config, | |
| dataset_name, | |
| args.agent_cls, | |
| args.max_iterations, | |
| args.eval_note, | |
| args.eval_output_dir, | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit) | |
| run_evaluation( | |
| instances, metadata, output_file, args.eval_num_workers, process_instance | |
| ) | |