Spaces:
Build error
Build error
| import asyncio | |
| import os | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from evaluation.benchmarks.EDA.game import Q20Game, Q20GameCelebrity | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| get_parser, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import MessageAction | |
| from openhands.utils.async_utils import call_async_from_sync | |
| game = None | |
| def codeact_user_response_eda(state: State) -> str: | |
| global game | |
| model_guess = '' | |
| # retrieve the latest model message from history | |
| if state.history: | |
| last_agent_message = state.get_last_agent_message() | |
| model_guess = last_agent_message.content if last_agent_message else '' | |
| assert game is not None, 'Game is not initialized.' | |
| msg = game.generate_user_response(model_guess) | |
| game.curr_turn += 1 | |
| logger.info(f'Model guess: {model_guess}') | |
| logger.info(f'Answer response: {msg}') | |
| if 'bingo!' in msg.lower(): | |
| return '/exit' | |
| return msg | |
| AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
| 'CodeActAgent': codeact_user_response_eda, | |
| } | |
| AGENT_CLS_TO_INST_SUFFIX = { | |
| 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
| } | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'python:3.12-bookworm' | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ) -> EvalOutput: | |
| config = get_config(metadata) | |
| instance_id = instance['text'].strip() | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance_id, log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance_id}.') | |
| # Prepare instruction | |
| _game_class = {'eda-things': Q20Game, 'eda-celebs': Q20GameCelebrity} | |
| guesser_kargs = { | |
| 'max_new_tokens': 64, | |
| 'temperature': 0.8, | |
| 'repetition_penalty': 1.0, | |
| 'do_sample': True, | |
| } # no penalty | |
| # Use codeactagent as guesser_model | |
| global game | |
| assert metadata.dataset is not None | |
| assert metadata.details is not None | |
| game = _game_class[metadata.dataset]( | |
| item=instance['text'].strip(), | |
| answerer_model=metadata.details['answerer_model'], | |
| guesser_model=None, | |
| num_turns=metadata.max_iterations, | |
| openai_api_key=metadata.details['openai_api_key'], | |
| guesser_kargs=guesser_kargs, | |
| ) | |
| instruction = f'{game.first_user_utterance}' | |
| logger.info(f'Instruction: {instruction}') | |
| instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
| # Here's how you can run the agent (similar to the `main` function) and get the final task state | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
| metadata.agent_class | |
| ], | |
| ) | |
| ) | |
| # ======= Attempt to evaluate the agent's edits ======= | |
| # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
| # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| last_agent_message = state.get_last_agent_message() | |
| final_message = last_agent_message.content if last_agent_message else '' | |
| logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}') | |
| test_result = game.reward() | |
| metrics = state.metrics.get() if state.metrics else None | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=instance_id, | |
| instance=instance.to_dict(), | |
| instruction=instruction, | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result={ | |
| 'success': test_result, | |
| 'final_message': final_message, | |
| 'ground_truth': instance['text'], | |
| }, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| parser = get_parser() | |
| parser.add_argument( | |
| '--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model' | |
| ) | |
| parser.add_argument( | |
| '--dataset', | |
| default='things', | |
| choices=['things', 'celebs'], | |
| type=str, | |
| help='dataset to be used', | |
| ) | |
| parser.add_argument( | |
| '--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key' | |
| ) | |
| parser.add_argument( | |
| '--data-split', | |
| default='test', | |
| type=str, | |
| help='data split, eg, test', | |
| ) | |
| args, _ = parser.parse_known_args() | |
| eda_dataset = load_dataset( | |
| 'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split | |
| ) | |
| eda_dataset.rename(columns={'text': 'instance_id'}, inplace=True) | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config, | |
| f'eda-{args.dataset}', | |
| args.agent_cls, | |
| args.max_iterations, | |
| args.eval_note, | |
| args.eval_output_dir, | |
| data_split=args.data_split, | |
| details={ | |
| 'answerer_model': str(args.answerer_model), | |
| 'openai_api_key': str(args.OPENAI_API_KEY), | |
| }, | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| prepared_dataset = prepare_dataset( | |
| eda_dataset.to_pandas(), output_file, args.eval_n_limit | |
| ) | |
| run_evaluation( | |
| prepared_dataset, | |
| metadata, | |
| output_file, | |
| args.eval_num_workers, | |
| process_instance, | |
| ) | |