Spaces:
Build error
Build error
| import asyncio | |
| import json | |
| import os | |
| from typing import Any | |
| import browsergym.webarena # noqa F401 register webarena tasks as gym environments | |
| import gymnasium as gym | |
| import pandas as pd | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| parse_arguments, | |
| ) | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import ( | |
| BrowseInteractiveAction, | |
| CmdRunAction, | |
| MessageAction, | |
| ) | |
| from openhands.events.observation import CmdOutputObservation | |
| from openhands.runtime.base import Runtime | |
| from openhands.runtime.browser.browser_env import ( | |
| BROWSER_EVAL_GET_GOAL_ACTION, | |
| BROWSER_EVAL_GET_REWARDS_ACTION, | |
| ) | |
| from openhands.utils.async_utils import call_async_from_sync | |
| SUPPORTED_AGENT_CLS = {'BrowsingAgent'} | |
| def get_config( | |
| metadata: EvalMetadata, | |
| env_id: str, | |
| ) -> OpenHandsConfig: | |
| base_url = os.environ.get('WEBARENA_BASE_URL', None) | |
| openai_api_key = os.environ.get('OPENAI_API_KEY', None) | |
| assert base_url is not None, 'WEBARENA_BASE_URL must be set' | |
| assert openai_api_key is not None, 'OPENAI_API_KEY must be set' | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'python:3.12-bookworm' | |
| sandbox_config.browsergym_eval_env = env_id | |
| sandbox_config.runtime_startup_env_vars = { | |
| 'BASE_URL': base_url, | |
| 'OPENAI_API_KEY': openai_api_key, | |
| 'SHOPPING': f'{base_url}:7770/', | |
| 'SHOPPING_ADMIN': f'{base_url}:7780/admin', | |
| 'REDDIT': f'{base_url}:9999', | |
| 'GITLAB': f'{base_url}:8023', | |
| 'WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing', | |
| 'MAP': f'{base_url}:3000', | |
| 'HOMEPAGE': f'{base_url}:4399', | |
| } | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def initialize_runtime( | |
| runtime: Runtime, | |
| ) -> dict: | |
| """Initialize the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| # Set instance id | |
| action = CmdRunAction(command='mkdir -p /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION) | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
| goal = obs.content | |
| logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
| return goal | |
| def complete_runtime( | |
| runtime: Runtime, | |
| ) -> dict[str, Any]: | |
| """Complete the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| If you need to do something in the sandbox to get the correctness metric after | |
| the agent has run, modify this function. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION) | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
| logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
| return { | |
| 'rewards': json.loads(obs.content), | |
| } | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ): | |
| env_id = instance.instance_id | |
| config = get_config(metadata, env_id) | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, env_id, log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {env_id}.') | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| task_str = initialize_runtime(runtime) | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=task_str), | |
| runtime=runtime, | |
| ) | |
| ) | |
| # ======= Attempt to evaluate the agent's environment impact ======= | |
| # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
| # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| metrics = state.metrics.get() if state.metrics else None | |
| # Instruction is the first message from the USER | |
| instruction = '' | |
| for event in state.history: | |
| if isinstance(event, MessageAction): | |
| instruction = event.content | |
| break | |
| return_val = complete_runtime(runtime) | |
| logger.info(f'Return value from complete_runtime: {return_val}') | |
| reward = max(return_val['rewards']) | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=env_id, | |
| instruction=instruction, | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result={ | |
| 'reward': reward, | |
| }, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| args = parse_arguments() | |
| dataset = pd.DataFrame( | |
| { | |
| 'instance_id': [ | |
| id | |
| for id in gym.envs.registry.keys() | |
| if id.startswith('browsergym/webarena') | |
| ] | |
| } | |
| ) | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config, | |
| args.dataset_name, | |
| args.agent_cls, | |
| args.max_iterations, | |
| args.eval_note, | |
| args.eval_output_dir, | |
| ) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| instances = prepare_dataset(dataset, output_file, args.eval_n_limit) | |
| run_evaluation( | |
| instances, | |
| metadata, | |
| output_file, | |
| args.eval_num_workers, | |
| process_instance, | |
| ) | |