Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from ..utils.configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import logging | |
| from .loaders import UNet2DConditionLoadersMixin | |
| from .activations import get_activation | |
| from .attention_processor import AttentionProcessor, AttnProcessor | |
| from .embeddings import ( | |
| GaussianFourierProjection, | |
| TextImageProjection, | |
| TextImageTimeEmbedding, | |
| TextTimeEmbedding, | |
| TimestepEmbedding, | |
| Timesteps, | |
| ) | |
| from .modeling_utils import ModelMixin | |
| from .unet_2d_blocks import ( | |
| CrossAttnDownBlock2D, | |
| CrossAttnUpBlock2D, | |
| DownBlock2D, | |
| UNetMidBlock2DCrossAttn, | |
| UNetMidBlock2DSimpleCrossAttn, | |
| UpBlock2D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| from .unet_2d_condition import UNet2DConditionOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class UNet2DConditionGuidedModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
| r""" | |
| UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, | |
| conditional state, and a timestep and returns sample shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all the models (such as downloading or saving, etc.) | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
| center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to | |
| `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | |
| The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, | |
| will skip the mid block layer if `None`. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to | |
| `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
| The tuple of upsample blocks to use. | |
| only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): | |
| Whether to include self-attention in the basic transformer blocks, see | |
| [`~models.attention.BasicTransformerBlock`]. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
| If `None`, it will skip the normalization and activation layers in post-processing | |
| norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
| cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
| The dimension of the cross attention features. | |
| encoder_hid_dim (`int`, *optional*, defaults to None): | |
| If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
| dimension to `cross_attention_dim`. | |
| encoder_hid_dim_type (`str`, *optional*, defaults to None): | |
| If given, the `encoder_hidden_states` and potentially other embeddings will be down-projected to text | |
| embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
| attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
| num_attention_heads (`int`, *optional*): | |
| The number of attention heads. If not defined, defaults to `attention_head_dim` | |
| resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
| for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`. | |
| class_embed_type (`str`, *optional*, defaults to None): | |
| The type of class embedding to use which is ultimately summed with the time embeddings. | |
| Choose from `None`, `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
| addition_embed_type (`str`, *optional*, defaults to None): | |
| Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
| "text". "text" will use the `TextTimeEmbedding` layer. | |
| num_class_embeds (`int`, *optional*, defaults to None): | |
| Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
| class conditioning with `class_embed_type` equal to `None`. | |
| time_embedding_type (`str`, *optional*, default to `positional`): | |
| The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. | |
| time_embedding_dim (`int`, *optional*, default to `None`): | |
| An optional override for the dimension of the projected time embedding. | |
| time_embedding_act_fn (`str`, *optional*, default to `None`): | |
| Optional activation function to use on the time embeddings only one time before they as passed | |
| to the rest of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`. | |
| timestep_post_act (`str, *optional*, default to `None`): | |
| The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. | |
| time_cond_proj_dim (`int`, *optional*, default to `None`): | |
| The dimension of `cond_proj` layer in timestep embedding. | |
| conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. | |
| conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. | |
| projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when | |
| using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`. | |
| class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time | |
| embeddings with the class embeddings. | |
| mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): | |
| Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If | |
| `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the | |
| `only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. | |
| Else, it will default to `False`. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ), | |
| mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
| up_block_types: Tuple[str] = ( | |
| "UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D" | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: Union[int, Tuple[int]] = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
| encoder_hid_dim: Optional[int] = None, | |
| encoder_hid_dim_type: Optional[str] = None, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| addition_embed_type: Optional[str] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: int = 1.0, | |
| time_embedding_type: str = "positional", | |
| time_embedding_dim: Optional[int] = None, | |
| time_embedding_act_fn: Optional[str] = None, | |
| timestep_post_act: Optional[str] = None, | |
| time_cond_proj_dim: Optional[int] = None, | |
| guidance_embedding_type: str = "fourier", | |
| guidance_embedding_dim: Optional[int] = None, | |
| guidance_post_act: Optional[str] = None, | |
| guidance_cond_proj_dim: Optional[int] = None, | |
| conv_in_kernel: int = 3, | |
| conv_out_kernel: int = 3, | |
| projection_class_embeddings_input_dim: Optional[int] = None, | |
| class_embeddings_concat: bool = False, | |
| mid_block_only_cross_attention: Optional[bool] = None, | |
| cross_attention_norm: Optional[str] = None, | |
| addition_embed_type_num_heads=64, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| # If `num_attention_heads` is not defined (which is the case for most models) | |
| # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
| # The reason for this behavior is to correct for incorrectly named variables that were introduced | |
| # when this library was created. The incorrect naming was only discovered much later in | |
| # https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
| # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too | |
| # backwards breaking which is why we correct for the naming here. | |
| num_attention_heads = num_attention_heads or attention_head_dim | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `down_block_types` as `up_block_types`. " | |
| f"`down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `block_out_channels` as `down_block_types`. " | |
| f"`block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `only_cross_attention` as `down_block_types`. " | |
| f"`only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `num_attention_heads` as `down_block_types`. " | |
| f"`num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `attention_head_dim` as `down_block_types`. " | |
| f"`attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
| raise ValueError( | |
| "Must provide the same number of `cross_attention_dim` as `down_block_types`. " | |
| f"`cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `layers_per_block` as `down_block_types`. " | |
| f"`layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = nn.Conv2d( | |
| in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
| ) | |
| # time and guidance embeddings | |
| embedding_types = {'time': time_embedding_type, 'guidance': guidance_embedding_type} | |
| embedding_dims = {'time': time_embedding_dim, 'guidance': guidance_embedding_dim} | |
| embed_dims, embed_input_dims, embed_projs = {}, {}, {} | |
| for key in ['time', 'guidance']: | |
| logger.info(f"Using {embedding_types[key]} embedding for {key}.") | |
| if embedding_types[key] == "fourier": | |
| embed_dims[key] = embedding_dims[key] or block_out_channels[0] * 4 | |
| embed_input_dims[key] = embed_dims[key] | |
| if embed_dims[key] % 2 != 0: | |
| raise ValueError( | |
| f"`{key}_embed_dim` should be divisible by 2, but is {embed_dims[key]}." | |
| ) | |
| embed_projs[key] = GaussianFourierProjection( | |
| embed_dims[key] // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
| ) | |
| elif embedding_types[key] == "positional": | |
| embed_dims[key] = embedding_dims[key] or block_out_channels[0] * 4 | |
| embed_input_dims[key] = block_out_channels[0] | |
| embed_projs[key] = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| else: | |
| raise ValueError( | |
| f"{embedding_types[key]} does not exist for {key} embedding. " | |
| f"Please make sure to use one of `fourier` or `positional`." | |
| ) | |
| self.time_proj, self.guidance_proj = embed_projs['time'], embed_projs['guidance'] | |
| self.time_embedding = TimestepEmbedding( | |
| embed_input_dims['time'], | |
| embed_dims['time'], | |
| act_fn=act_fn, | |
| post_act_fn=timestep_post_act, | |
| cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| self.guidance_embedding = TimestepEmbedding( | |
| embed_input_dims['guidance'], | |
| embed_dims['guidance'], | |
| act_fn=act_fn, | |
| post_act_fn=guidance_post_act, | |
| cond_proj_dim=guidance_cond_proj_dim, | |
| ) | |
| if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
| encoder_hid_dim_type = "text_proj" | |
| self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | |
| logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | |
| if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| "`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` " | |
| f"is set to {encoder_hid_dim_type}." | |
| ) | |
| if encoder_hid_dim_type == "text_proj": | |
| self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
| elif encoder_hid_dim_type == "text_image_proj": | |
| # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much, | |
| # they are set to `cross_attention_dim` here as this is exactly the required dimension for the | |
| # currently only use case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
| self.encoder_hid_proj = TextImageProjection( | |
| text_embed_dim=encoder_hid_dim, | |
| image_embed_dim=cross_attention_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| elif encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
| ) | |
| else: | |
| self.encoder_hid_proj = None | |
| # class embedding | |
| # print(f"class_embed_type: {class_embed_type}, num_class_embeds: {num_class_embeds}") | |
| if class_embed_type is None and num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, embedding_dims['time']) | |
| elif class_embed_type == "timestep": | |
| self.class_embedding = TimestepEmbedding( | |
| embed_input_dims['time'], embed_dims['time'], act_fn=act_fn | |
| ) | |
| elif class_embed_type == "identity": | |
| self.class_embedding = nn.Identity(embed_dims['time'], embed_dims['time']) | |
| elif class_embed_type == "projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
| ) | |
| # The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
| # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
| # 2. it projects from an arbitrary input dimension. | |
| # | |
| # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
| # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal | |
| # embeddings. As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
| self.class_embedding = TimestepEmbedding( | |
| projection_class_embeddings_input_dim, embed_dims['time'] | |
| ) | |
| elif class_embed_type == "simple_projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'simple_projection' requires " | |
| "`projection_class_embeddings_input_dim` be set" | |
| ) | |
| self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, embed_dims['time']) | |
| else: | |
| self.class_embedding = None | |
| # Addition embedding | |
| if addition_embed_type == "text": | |
| if encoder_hid_dim is not None: | |
| text_time_embedding_from_dim = encoder_hid_dim | |
| else: | |
| text_time_embedding_from_dim = cross_attention_dim | |
| self.add_embedding = TextTimeEmbedding( | |
| text_time_embedding_from_dim, embed_dims['time'], num_heads=addition_embed_type_num_heads | |
| ) | |
| elif addition_embed_type == "text_image": | |
| # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. | |
| # To not clutter the __init__ too much, they are set to `cross_attention_dim` | |
| # here as this is exactly the required dimension for the currently only use case | |
| # when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
| self.add_embedding = TextImageTimeEmbedding( | |
| text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, | |
| time_embed_dim=embed_dims['time'] | |
| ) | |
| elif addition_embed_type is not None: | |
| raise ValueError( | |
| f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'." | |
| ) | |
| # Embedding activation function | |
| if time_embedding_act_fn is None: | |
| self.time_embed_act = None | |
| else: | |
| self.time_embed_act = get_activation(time_embedding_act_fn) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| if mid_block_only_cross_attention is None: | |
| mid_block_only_cross_attention = only_cross_attention | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if mid_block_only_cross_attention is None: | |
| mid_block_only_cross_attention = False | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| if isinstance(cross_attention_dim, int): | |
| cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
| if isinstance(layers_per_block, int): | |
| layers_per_block = [layers_per_block] * len(down_block_types) | |
| if class_embeddings_concat: | |
| # The time embeddings are concatenated with the class embeddings. The dimension of the | |
| # time embeddings passed to the down, middle, and up blocks is twice the dimension of | |
| # the regular time embeddings | |
| # Now we have time emb, guidance emb, and class emb | |
| blocks_time_embed_dim = embed_dims['time'] * 3 | |
| else: | |
| blocks_time_embed_dim = embed_dims['time'] | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim[i], | |
| num_attention_heads=num_attention_heads[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| resnet_skip_time_act=resnet_skip_time_act, | |
| resnet_out_scale_factor=resnet_out_scale_factor, | |
| cross_attention_norm=cross_attention_norm, | |
| attention_head_dim=\ | |
| attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| if mid_block_type == "UNetMidBlock2DCrossAttn": | |
| self.mid_block = UNetMidBlock2DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim[-1], | |
| num_attention_heads=num_attention_heads[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": | |
| self.mid_block = UNetMidBlock2DSimpleCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| cross_attention_dim=cross_attention_dim[-1], | |
| attention_head_dim=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| skip_time_act=resnet_skip_time_act, | |
| only_cross_attention=mid_block_only_cross_attention, | |
| cross_attention_norm=cross_attention_norm, | |
| ) | |
| elif mid_block_type is None: | |
| self.mid_block = None | |
| else: | |
| raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
| reversed_layers_per_block = list(reversed(layers_per_block)) | |
| reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=reversed_layers_per_block[i] + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=reversed_cross_attention_dim[i], | |
| num_attention_heads=reversed_num_attention_heads[i], | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| resnet_skip_time_act=resnet_skip_time_act, | |
| resnet_out_scale_factor=resnet_out_scale_factor, | |
| cross_attention_norm=cross_attention_norm, | |
| attention_head_dim=\ | |
| attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| if norm_num_groups is not None: | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
| ) | |
| self.conv_act = get_activation(act_fn) | |
| else: | |
| self.conv_norm_out = None | |
| self.conv_act = None | |
| conv_out_padding = (conv_out_kernel - 1) // 2 | |
| self.conv_out = nn.Conv2d( | |
| block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
| ) | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in | |
| the model with indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor] | |
| ): | |
| if hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.processor | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Parameters: | |
| `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the | |
| processor of **all** `Attention` layers. | |
| In case `processor` is a dict, the key needs to define the path to the corresponding cross | |
| attention processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match" | |
| f" the number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| self.set_attn_processor(AttnProcessor()) | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute | |
| attention in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two | |
| steps. "max"`, maximum amount of memory will be saved by running only one slice at a time. | |
| If a number is provided, uses as many slices as `num_attention_heads // slice_size`. | |
| In this case, `num_attention_heads` must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has " | |
| f"{len(sliceable_head_dims)} different attention layers. " | |
| f"Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): | |
| module.gradient_checkpointing = value | |
| def _prepare_tensor(self, value, device): | |
| if not torch.is_tensor(value): | |
| # Requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| if isinstance(value, float): | |
| dtype = torch.float32 if device.type == "mps" else torch.float64 | |
| else: | |
| dtype = torch.int32 if device.type == "mps" else torch.int64 | |
| return torch.tensor([value], dtype=dtype, device=device) | |
| elif len(value.shape) == 0: | |
| return value[None].to(device) | |
| else: | |
| return value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| guidance: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| guidance_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| **kwargs | |
| ) -> Union[UNet2DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| (batch, sequence_length, feature_dim) encoder hidden states | |
| encoder_attention_mask (`torch.Tensor`): | |
| (batch, sequence_length) cross-attention mask, applied to encoder_hidden_states. True = keep, | |
| False = discard. Mask will be converted into a bias, which adds large negative values to | |
| attention scores corresponding to "discard" tokens. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] | |
| instead of a plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined | |
| under `self.processor` in [diffusers.cross_attention] | |
| (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| added_cond_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified includes additonal conditions that can be used for | |
| additonal time embeddings or encoder hidden states projections. See the configurations | |
| `encoder_hid_dim_type` and `addition_embed_type` for more information. | |
| Returns: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
| When returning a tuple, the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2 ** self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, | |
| # which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * (-10000.0) | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time and guidance | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = self._prepare_tensor(timestep, sample.device).expand(sample.shape[0]) | |
| # Project to get embedding | |
| # `Timestep` does not contain any weights and will always return fp32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| t_emb = self.time_proj(timestep).to(dtype=sample.dtype) | |
| t_emb = self.time_embedding(t_emb, timestep_cond) | |
| guidance = self._prepare_tensor(guidance, sample.device).expand(sample.shape[0]) | |
| g_emb = self.guidance_proj(guidance).to(dtype=sample.dtype) | |
| g_emb = self.guidance_embedding(g_emb, guidance_cond) | |
| # 1.5. prepare other embeddings | |
| if self.class_embedding is None: | |
| emb = t_emb + g_emb | |
| else: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels).to(dtype=sample.dtype) | |
| class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
| if self.config.class_embeddings_concat: | |
| emb = torch.cat([t_emb, g_emb, class_emb], dim=-1) | |
| else: | |
| emb = t_emb + g_emb + class_emb | |
| if self.config.addition_embed_type == "text": | |
| aug_emb = self.add_embedding(encoder_hidden_states) | |
| emb = emb + aug_emb | |
| elif self.config.addition_embed_type == "text_image": | |
| # Kadinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' " | |
| "which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
| aug_emb = self.add_embedding(text_embs, image_embs) | |
| emb = emb + aug_emb | |
| if self.time_embed_act is not None: | |
| emb = self.time_embed_act(emb) | |
| if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
| elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
| # Kadinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' " | |
| "which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
| ) | |
| image_embeds = added_cond_kwargs.get("image_embeds") | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
| new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| if mid_block_additional_residual is not None: | |
| sample = sample + mid_block_additional_residual | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, | |
| res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| if self.conv_norm_out: | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return UNet2DConditionOutput(sample=sample) | |