Spaces:
Running
Running
| # Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| ### This file has been modified for the purposes of the ConsistencyTTA generation. ### | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from .utils.configuration_utils import ConfigMixin, register_to_config | |
| from .utils.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines | |
| the cumulative product of (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the | |
| cumulative product of (1-beta) up to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): | |
| the maximum beta to use; use values lower than 1 to prevent singularities. | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| def alpha_bar(time_step): | |
| return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. | |
| Based on the original k-diffusion implementation by Katherine Crowson: | |
| https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/ | |
| k_diffusion/sampling.py#L90 | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed | |
| in the scheduler's `__init__` function, such as `num_train_timesteps`. | |
| They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the | |
| [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. | |
| Args: | |
| num_train_timesteps (`int`): | |
| number of diffusion steps used to train the model. | |
| beta_start (`float`): | |
| the starting `beta` value of inference. | |
| beta_end (`float`): | |
| the final `beta` value. | |
| beta_schedule (`str`): | |
| the beta schedule, a mapping from a beta range to a sequence of betas for stepping | |
| the model. Choose from `linear` or `scaled_linear`. | |
| trained_betas (`np.ndarray`, optional): | |
| option to pass an array of betas directly to the constructor to bypass | |
| `beta_start`, `beta_end` etc. | |
| options to clip the variance used when adding noise to the denoised sample. | |
| Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, | |
| `fixed_large_log`, `learned` or `learned_range`. | |
| prediction_type (`str`, default `epsilon`, optional): | |
| prediction type of the scheduler function, one of | |
| `epsilon` (predicting the noise of the diffusion process), | |
| `sample` (directly predicting the noisy sample`), or | |
| `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 2 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.00085, # sensible defaults | |
| beta_end: float = 0.012, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| prediction_type: str = "epsilon", | |
| use_karras_sigmas: Optional[bool] = False, | |
| ): | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace( | |
| beta_start, beta_end, num_train_timesteps, dtype=torch.float32 | |
| ) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = ( | |
| torch.linspace( | |
| beta_start ** 0.5, beta_end ** 0.5, | |
| num_train_timesteps, dtype=torch.float32 | |
| ) ** 2 | |
| ) | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError( | |
| f"{beta_schedule} does is not implemented for {self.__class__}" | |
| ) | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| # set all values | |
| self.use_karras_sigmas = use_karras_sigmas | |
| self.set_timesteps(num_train_timesteps, None, num_train_timesteps) | |
| def index_for_timestep(self, timestep): | |
| """Get the first / last index at which self.timesteps == timestep | |
| """ | |
| assert len(timestep.shape) < 2 | |
| avail_timesteps = self.timesteps.reshape(1, -1).to(timestep.device) | |
| mask = (avail_timesteps == timestep.reshape(-1, 1)) | |
| assert (mask.sum(dim=1) != 0).all(), f"timestep: {timestep.tolist()}" | |
| mask = mask.cpu() * torch.arange(mask.shape[1]).reshape(1, -1) | |
| if self.state_in_first_order: | |
| return mask.argmax(dim=1).numpy() | |
| else: | |
| return mask.argmax(dim=1).numpy() - 1 | |
| def scale_model_input( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| ) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the | |
| denoising model input depending on the current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| if not torch.is_tensor(timestep): | |
| timestep = torch.tensor(timestep) | |
| timestep = timestep.to(sample.device).reshape(-1) | |
| step_index = self.index_for_timestep(timestep) | |
| sigma = self.sigmas[step_index].reshape(-1, 1, 1, 1).to(sample.device) | |
| sample = sample / ((sigma ** 2 + 1) ** 0.5) # sample *= sqrt_alpha_prod | |
| return sample | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int, | |
| device: Union[str, torch.device] = None, | |
| num_train_timesteps: Optional[int] = None, | |
| ): | |
| """ | |
| Sets the timesteps used for the diffusion chain. | |
| Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples | |
| with a pre-trained model. | |
| device (`str` or `torch.device`, optional): | |
| the device to which the timesteps should be moved to. | |
| If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps | |
| timesteps = np.linspace( | |
| 0, num_train_timesteps - 1, num_inference_steps, dtype=float | |
| )[::-1].copy() | |
| # sigma^2 = beta / alpha | |
| sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
| log_sigmas = np.log(sigmas) | |
| sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
| if self.use_karras_sigmas: | |
| sigmas = self._convert_to_karras( | |
| in_sigmas=sigmas, num_inference_steps=self.num_inference_steps | |
| ) | |
| timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) | |
| sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | |
| sigmas = torch.from_numpy(sigmas).to(device=device) | |
| self.sigmas = torch.cat( | |
| [sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]] | |
| ) | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = self.sigmas.max() | |
| timesteps = torch.from_numpy(timesteps) | |
| timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) | |
| if 'mps' in str(device): | |
| timesteps = timesteps.float() | |
| self.timesteps = timesteps.to(device) | |
| # empty dt and derivative | |
| self.prev_derivative = None | |
| self.dt = None | |
| def _sigma_to_t(self, sigma, log_sigmas): | |
| # get log sigma | |
| log_sigma = np.log(sigma) | |
| # get distribution | |
| dists = log_sigma - log_sigmas[:, np.newaxis] | |
| # get sigmas range | |
| low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip( | |
| max=log_sigmas.shape[0] - 2 | |
| ) | |
| high_idx = low_idx + 1 | |
| low = log_sigmas[low_idx] | |
| high = log_sigmas[high_idx] | |
| # interpolate sigmas | |
| w = (low - log_sigma) / (low - high) | |
| w = np.clip(w, 0, 1) | |
| # transform interpolation to time range | |
| t = (1 - w) * low_idx + w * high_idx | |
| t = t.reshape(sigma.shape) | |
| return t | |
| def _convert_to_karras( | |
| self, in_sigmas: torch.FloatTensor, num_inference_steps | |
| ) -> torch.FloatTensor: | |
| """Constructs the noise schedule of Karras et al. (2022).""" | |
| sigma_min: float = in_sigmas[-1].item() | |
| sigma_max: float = in_sigmas[0].item() | |
| rho = 7.0 # 7.0 is the value used in the paper | |
| ramp = np.linspace(0, 1, num_inference_steps) | |
| min_inv_rho = sigma_min ** (1 / rho) | |
| max_inv_rho = sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return sigmas | |
| def state_in_first_order(self): | |
| return self.dt is None | |
| def step( | |
| self, | |
| model_output: Union[torch.FloatTensor, np.ndarray], | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: Union[torch.FloatTensor, np.ndarray], | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample at the previous timestep by reversing the SDE. | |
| Core function to propagate the diffusion process from the learned | |
| model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor` or `np.ndarray`): | |
| direct output from learned diffusion model. | |
| timestep (`int`): | |
| current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor` or `np.ndarray`): | |
| current instance of sample being created by diffusion process. | |
| return_dict (`bool`): | |
| option for returning tuple rather than SchedulerOutput class | |
| Returns: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, | |
| the first element is the sample tensor. | |
| """ | |
| if not torch.is_tensor(timestep): | |
| timestep = torch.tensor(timestep) | |
| timestep = timestep.reshape(-1).to(sample.device) | |
| step_index = self.index_for_timestep(timestep) | |
| if self.state_in_first_order: | |
| sigma = self.sigmas[step_index] | |
| sigma_next = self.sigmas[step_index + 1] | |
| else: | |
| # 2nd order / Heun's method | |
| sigma = self.sigmas[step_index - 1] | |
| sigma_next = self.sigmas[step_index] | |
| sigma = sigma.reshape(-1, 1, 1, 1).to(sample.device) | |
| sigma_next = sigma_next.reshape(-1, 1, 1, 1).to(sample.device) | |
| sigma_input = sigma if self.state_in_first_order else sigma_next | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = sample - sigma_input * model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| alpha_prod = 1 / (sigma_input ** 2 + 1) | |
| pred_original_sample = ( | |
| sample * alpha_prod - model_output * (sigma_input * alpha_prod ** .5) | |
| ) | |
| elif self.config.prediction_type == "sample": | |
| raise NotImplementedError("prediction_type not implemented yet: sample") | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} " | |
| "must be one of `epsilon`, or `v_prediction`" | |
| ) | |
| if self.state_in_first_order: | |
| # 2. Convert to an ODE derivative for 1st order | |
| derivative = (sample - pred_original_sample) / sigma | |
| # 3. delta timestep | |
| dt = sigma_next - sigma | |
| # store for 2nd order step | |
| self.prev_derivative = derivative | |
| self.dt = dt | |
| self.sample = sample | |
| else: | |
| # 2. 2nd order / Heun's method | |
| derivative = (sample - pred_original_sample) / sigma_next | |
| derivative = (self.prev_derivative + derivative) / 2 | |
| # 3. take prev timestep & sample | |
| dt = self.dt | |
| sample = self.sample | |
| # free dt and derivative | |
| # Note, this puts the scheduler in "first order mode" | |
| self.prev_derivative = None | |
| self.dt = None | |
| self.sample = None | |
| prev_sample = sample + derivative * dt | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.FloatTensor, | |
| ) -> torch.FloatTensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| self.sigmas = self.sigmas.to( | |
| device=original_samples.device, dtype=original_samples.dtype | |
| ) | |
| self.timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| step_indices = self.index_for_timestep(timesteps) | |
| sigma = self.sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| noisy_samples = original_samples + noise * sigma | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |