Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -12,10 +12,10 @@ loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 13 |
|
| 14 |
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 15 |
-
base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 16 |
-
peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
|
| 17 |
-
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 18 |
-
#merged_model = model.merge_and_unload()
|
| 19 |
|
| 20 |
|
| 21 |
# Handle calls to DistilBERT------------------------------------------
|
|
@@ -53,15 +53,15 @@ def AlbertUntrained_fn(text1, text2):
|
|
| 53 |
# Handle calls to Deberta--------------------------------------------
|
| 54 |
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
|
| 55 |
DebertanoLORA_pipe = pipeline("text-classification", model="rajevan123/STS-Conventional-Fine-Tuning")
|
| 56 |
-
DebertawithLORA_pipe = pipeline("text-classification",model=model, tokenizer=tokenizer2)
|
| 57 |
|
| 58 |
#STS models
|
| 59 |
def DebertanoLORA_fn(text1, text2):
|
| 60 |
return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})
|
| 61 |
|
| 62 |
def DebertawithLORA_fn(text1, text2):
|
| 63 |
-
return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
|
| 64 |
-
|
| 65 |
|
| 66 |
def DebertaUntrained_fn(text1, text2):
|
| 67 |
return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})
|
|
@@ -73,6 +73,50 @@ def displayMetricStatsUntrained():
|
|
| 73 |
return "No statistics to display for untrained models"
|
| 74 |
|
| 75 |
def displayMetricStatsText():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
|
| 77 |
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 78 |
size_guidance={
|
|
@@ -94,6 +138,71 @@ def displayMetricStatsText():
|
|
| 94 |
|
| 95 |
return metrics
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def displayMetricStatsGraph():
|
| 98 |
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
|
| 99 |
event_acc = event_accumulator.EventAccumulator(file_name,
|
|
@@ -199,7 +308,7 @@ with gr.Blocks(
|
|
| 199 |
btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
|
| 200 |
btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
|
| 201 |
btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
|
| 202 |
-
btnTextClassStats.click(fn=
|
| 203 |
|
| 204 |
with gr.Tab("Natural Language Inferencing"):
|
| 205 |
with gr.Row():
|
|
@@ -313,8 +422,8 @@ with gr.Blocks(
|
|
| 313 |
sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
|
| 314 |
sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
|
| 315 |
btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
with gr.Tab("More informatioen"):
|
| 320 |
gr.Markdown("stuff to add")
|
|
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 13 |
|
| 14 |
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 15 |
+
# base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 16 |
+
# peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
|
| 17 |
+
# model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 18 |
+
# #merged_model = model.merge_and_unload()
|
| 19 |
|
| 20 |
|
| 21 |
# Handle calls to DistilBERT------------------------------------------
|
|
|
|
| 53 |
# Handle calls to Deberta--------------------------------------------
|
| 54 |
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
|
| 55 |
DebertanoLORA_pipe = pipeline("text-classification", model="rajevan123/STS-Conventional-Fine-Tuning")
|
| 56 |
+
#DebertawithLORA_pipe = pipeline("text-classification",model=model, tokenizer=tokenizer2)
|
| 57 |
|
| 58 |
#STS models
|
| 59 |
def DebertanoLORA_fn(text1, text2):
|
| 60 |
return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})
|
| 61 |
|
| 62 |
def DebertawithLORA_fn(text1, text2):
|
| 63 |
+
#return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
|
| 64 |
+
return ("working2")
|
| 65 |
|
| 66 |
def DebertaUntrained_fn(text1, text2):
|
| 67 |
return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})
|
|
|
|
| 73 |
return "No statistics to display for untrained models"
|
| 74 |
|
| 75 |
def displayMetricStatsText():
|
| 76 |
+
file_name = 'events.out.tfevents.distilbertSA-conventional.0'
|
| 77 |
+
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 78 |
+
size_guidance={
|
| 79 |
+
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
|
| 80 |
+
event_accumulator.IMAGES: 4,
|
| 81 |
+
event_accumulator.AUDIO: 4,
|
| 82 |
+
event_accumulator.SCALARS: 0,
|
| 83 |
+
event_accumulator.HISTOGRAMS: 1,
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
event_acc.Reload()
|
| 87 |
+
accuracy_data = event_acc.Scalars('eval/accuracy')
|
| 88 |
+
loss_data = event_acc.Scalars('eval/loss')
|
| 89 |
+
metrics = ''
|
| 90 |
+
for i in range(0, len(loss_data)):
|
| 91 |
+
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
|
| 92 |
+
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
|
| 93 |
+
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
|
| 94 |
+
|
| 95 |
+
return metrics
|
| 96 |
+
|
| 97 |
+
def displayMetricStatsTextTCLora():
|
| 98 |
+
file_name = 'events.out.tfevents.distilbertSA-LORA.0'
|
| 99 |
+
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 100 |
+
size_guidance={
|
| 101 |
+
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
|
| 102 |
+
event_accumulator.IMAGES: 4,
|
| 103 |
+
event_accumulator.AUDIO: 4,
|
| 104 |
+
event_accumulator.SCALARS: 0,
|
| 105 |
+
event_accumulator.HISTOGRAMS: 1,
|
| 106 |
+
})
|
| 107 |
+
|
| 108 |
+
event_acc.Reload()
|
| 109 |
+
accuracy_data = event_acc.Scalars('eval/accuracy')
|
| 110 |
+
loss_data = event_acc.Scalars('eval/loss')
|
| 111 |
+
metrics = ''
|
| 112 |
+
for i in range(0, len(loss_data)):
|
| 113 |
+
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
|
| 114 |
+
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
|
| 115 |
+
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
|
| 116 |
+
|
| 117 |
+
return metrics
|
| 118 |
+
|
| 119 |
+
def displayMetricStatsTextNLINoLora():
|
| 120 |
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
|
| 121 |
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 122 |
size_guidance={
|
|
|
|
| 138 |
|
| 139 |
return metrics
|
| 140 |
|
| 141 |
+
def displayMetricStatsTextNLILora():
|
| 142 |
+
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
|
| 143 |
+
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 144 |
+
size_guidance={
|
| 145 |
+
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
|
| 146 |
+
event_accumulator.IMAGES: 4,
|
| 147 |
+
event_accumulator.AUDIO: 4,
|
| 148 |
+
event_accumulator.SCALARS: 0,
|
| 149 |
+
event_accumulator.HISTOGRAMS: 1,
|
| 150 |
+
})
|
| 151 |
+
|
| 152 |
+
event_acc.Reload()
|
| 153 |
+
accuracy_data = event_acc.Scalars('eval/accuracy')
|
| 154 |
+
loss_data = event_acc.Scalars('eval/loss')
|
| 155 |
+
metrics = ''
|
| 156 |
+
for i in range(0, len(loss_data)):
|
| 157 |
+
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
|
| 158 |
+
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
|
| 159 |
+
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
|
| 160 |
+
|
| 161 |
+
return metrics
|
| 162 |
+
|
| 163 |
+
def displayMetricStatsTextSTSLora():
|
| 164 |
+
file_name = 'events.out.tfevents.STS-Lora.2'
|
| 165 |
+
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 166 |
+
size_guidance={
|
| 167 |
+
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
|
| 168 |
+
event_accumulator.IMAGES: 4,
|
| 169 |
+
event_accumulator.AUDIO: 4,
|
| 170 |
+
event_accumulator.SCALARS: 0,
|
| 171 |
+
event_accumulator.HISTOGRAMS: 1,
|
| 172 |
+
})
|
| 173 |
+
|
| 174 |
+
event_acc.Reload()
|
| 175 |
+
accuracy_data = event_acc.Scalars('eval/accuracy')
|
| 176 |
+
loss_data = event_acc.Scalars('eval/loss')
|
| 177 |
+
metrics = ''
|
| 178 |
+
for i in range(0, len(loss_data)):
|
| 179 |
+
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
|
| 180 |
+
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
|
| 181 |
+
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
|
| 182 |
+
|
| 183 |
+
return metrics
|
| 184 |
+
def displayMetricStatsTextSTSNoLora():
|
| 185 |
+
file_name = 'events.out.tfevents.STS-Conventional.0'
|
| 186 |
+
event_acc = event_accumulator.EventAccumulator(file_name,
|
| 187 |
+
size_guidance={
|
| 188 |
+
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
|
| 189 |
+
event_accumulator.IMAGES: 4,
|
| 190 |
+
event_accumulator.AUDIO: 4,
|
| 191 |
+
event_accumulator.SCALARS: 0,
|
| 192 |
+
event_accumulator.HISTOGRAMS: 1,
|
| 193 |
+
})
|
| 194 |
+
|
| 195 |
+
event_acc.Reload()
|
| 196 |
+
accuracy_data = event_acc.Scalars('eval/accuracy')
|
| 197 |
+
loss_data = event_acc.Scalars('eval/loss')
|
| 198 |
+
metrics = ''
|
| 199 |
+
for i in range(0, len(loss_data)):
|
| 200 |
+
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
|
| 201 |
+
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
|
| 202 |
+
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
|
| 203 |
+
|
| 204 |
+
return metrics
|
| 205 |
+
|
| 206 |
def displayMetricStatsGraph():
|
| 207 |
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
|
| 208 |
event_acc = event_accumulator.EventAccumulator(file_name,
|
|
|
|
| 308 |
btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
|
| 309 |
btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
|
| 310 |
btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
|
| 311 |
+
btnTextClassStats.click(fn=displayMetricStatsTextTCLora, outputs=TextClassLoraStats) #to be changed
|
| 312 |
|
| 313 |
with gr.Tab("Natural Language Inferencing"):
|
| 314 |
with gr.Row():
|
|
|
|
| 422 |
sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
|
| 423 |
sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
|
| 424 |
btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
|
| 425 |
+
btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
|
| 426 |
+
btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)
|
| 427 |
|
| 428 |
with gr.Tab("More informatioen"):
|
| 429 |
gr.Markdown("stuff to add")
|