Spaces:
Sleeping
Sleeping
Updated to include sts conventional training
Browse files
app.py
CHANGED
|
@@ -6,9 +6,11 @@ import plotly.express as px
|
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
|
|
|
|
|
| 9 |
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
|
|
|
| 10 |
|
| 11 |
-
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
|
| 12 |
|
| 13 |
# Handle calls to DistilBERT------------------------------------------
|
| 14 |
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
|
|
@@ -44,14 +46,15 @@ def AlbertUntrained_fn(text1, text2):
|
|
| 44 |
|
| 45 |
# Handle calls to Deberta--------------------------------------------
|
| 46 |
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
|
| 47 |
-
|
| 48 |
-
#DebertawithLORA_pipe = pipeline()
|
| 49 |
|
| 50 |
#STS models
|
| 51 |
def DebertanoLORA_fn(text1, text2):
|
| 52 |
-
return (
|
| 53 |
|
| 54 |
def DebertawithLORA_fn(text1, text2):
|
|
|
|
| 55 |
return ("working2")
|
| 56 |
|
| 57 |
def DebertaUntrained_fn(text1, text2):
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 9 |
+
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
|
| 10 |
+
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
| 11 |
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
| 12 |
+
#loraModel1 = AutoPeftModelForSequenceClassification.from_pretrained("rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small")
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
# Handle calls to DistilBERT------------------------------------------
|
| 16 |
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
|
|
|
|
| 46 |
|
| 47 |
# Handle calls to Deberta--------------------------------------------
|
| 48 |
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
|
| 49 |
+
DebertanoLORA_pipe = pipeline(model="rajevan123/STS-Conventional-Fine-Tuning")
|
| 50 |
+
#DebertawithLORA_pipe = pipeline("text-classification", model=loraModel1, tokenizer=tokenizer2)
|
| 51 |
|
| 52 |
#STS models
|
| 53 |
def DebertanoLORA_fn(text1, text2):
|
| 54 |
+
return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})
|
| 55 |
|
| 56 |
def DebertawithLORA_fn(text1, text2):
|
| 57 |
+
#return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
|
| 58 |
return ("working2")
|
| 59 |
|
| 60 |
def DebertaUntrained_fn(text1, text2):
|