Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import torch | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| pipeline, | |
| AutoProcessor, | |
| MusicgenForConditionalGeneration, | |
| ) | |
| from scipy.io.wavfile import write | |
| import tempfile | |
| from dotenv import load_dotenv | |
| import spaces | |
| load_dotenv() | |
| hf_token = os.getenv("HF_TOKEN") | |
| # --------------------------------------------------------------------- | |
| # Load Llama 3 Pipeline with Zero GPU (Encapsulated) | |
| # --------------------------------------------------------------------- | |
| def generate_script(user_prompt: str, model_id: str, token: str): | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| use_auth_token=token, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| system_prompt = ( | |
| "You are an expert radio imaging producer specializing in sound design and music. " | |
| "Take the user's concept and craft a concise, creative promo script with a strong focus on auditory elements and musical appeal." | |
| ) | |
| combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script:" | |
| result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) | |
| return result[0]["generated_text"].split("Refined script:")[-1].strip() | |
| except Exception as e: | |
| return f"Error generating script: {e}" | |
| # --------------------------------------------------------------------- | |
| # Load MusicGen Model (Encapsulated) | |
| # --------------------------------------------------------------------- | |
| def generate_audio(prompt: str, audio_length: int): | |
| try: | |
| musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") | |
| musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") | |
| musicgen_model.to("cuda") | |
| inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt") | |
| outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) | |
| musicgen_model.to("cpu") # Return the model to CPU | |
| sr = musicgen_model.config.audio_encoder.sampling_rate | |
| audio_data = outputs[0, 0].cpu().numpy() | |
| normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav: | |
| write(temp_wav.name, sr, normalized_audio) | |
| return temp_wav.name | |
| except Exception as e: | |
| return f"Error generating audio: {e}" | |
| # --------------------------------------------------------------------- | |
| # Gradio Interface | |
| # --------------------------------------------------------------------- | |
| def interface_generate_script(user_prompt, llama_model_id): | |
| return generate_script(user_prompt, llama_model_id, hf_token) | |
| def interface_generate_audio(script, audio_length): | |
| return generate_audio(script, audio_length) | |
| # --------------------------------------------------------------------- | |
| # Interface | |
| # --------------------------------------------------------------------- | |
| with gr.Blocks() as demo: | |
| # Header | |
| gr.Markdown(""" | |
| # ποΈ AI-Powered Radio Imaging Studio π | |
| ### Create stunning **radio promos** with **Llama 3** and **MusicGen** | |
| π₯ **Zero GPU** integration for efficiency and ease! | |
| """) | |
| # Script Generation Section | |
| gr.Markdown("## βοΈ Step 1: Generate Your Promo Script") | |
| with gr.Row(): | |
| user_prompt = gr.Textbox( | |
| label="π€ Enter Promo Idea", | |
| placeholder="E.g., A 15-second energetic jingle for a morning talk show.", | |
| lines=2, | |
| info="Describe your promo idea clearly to generate a creative script." | |
| ) | |
| llama_model_id = gr.Textbox( | |
| label="ποΈ Llama 3 Model ID", | |
| value="meta-llama/Meta-Llama-3-8B-Instruct", | |
| info="Enter the Hugging Face model ID for Llama 3." | |
| ) | |
| generate_script_button = gr.Button("Generate Script β¨") | |
| script_output = gr.Textbox( | |
| label="π Generated Promo Script", | |
| lines=4, | |
| interactive=False, | |
| info="Your generated promo script will appear here." | |
| ) | |
| # Audio Generation Section | |
| gr.Markdown("## π§ Step 2: Generate Audio from Your Script") | |
| with gr.Row(): | |
| audio_length = gr.Slider( | |
| label="π΅ Audio Length (tokens)", | |
| minimum=128, | |
| maximum=1024, | |
| step=64, | |
| value=512, | |
| info="Select the desired audio token length." # `info` is valid here | |
| ) | |
| generate_audio_button = gr.Button("Generate Audio πΆ") | |
| audio_output = gr.Audio( | |
| label="πΆ Generated Audio File", | |
| type="filepath", # Removed the `info` argument | |
| interactive=False | |
| ) | |
| # Footer | |
| gr.Markdown(""" | |
| <br><hr> | |
| <p style="text-align: center; font-size: 0.9em;"> | |
| Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a> | |
| </p> | |
| """, elem_id="footer") | |
| # Button Actions | |
| generate_script_button.click( | |
| fn=interface_generate_script, | |
| inputs=[user_prompt, llama_model_id], | |
| outputs=script_output, | |
| ) | |
| generate_audio_button.click( | |
| fn=interface_generate_audio, | |
| inputs=[script_output, audio_length], | |
| outputs=audio_output, | |
| ) | |
| # --------------------------------------------------------------------- | |
| # Launch App | |
| # --------------------------------------------------------------------- | |
| demo.launch(debug=True) | |