Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -50,6 +50,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
| 50 |
"""
|
| 51 |
if model_id in LLAMA_PIPELINES:
|
| 52 |
return LLAMA_PIPELINES[model_id]
|
|
|
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 54 |
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
model_id,
|
|
@@ -62,6 +63,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
| 62 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
| 63 |
return text_pipeline
|
| 64 |
|
|
|
|
| 65 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
| 66 |
"""
|
| 67 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
@@ -69,6 +71,7 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
| 69 |
"""
|
| 70 |
if model_key in MUSICGEN_MODELS:
|
| 71 |
return MUSICGEN_MODELS[model_key]
|
|
|
|
| 72 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
| 73 |
processor = AutoProcessor.from_pretrained(model_key)
|
| 74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -76,16 +79,19 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
| 76 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
| 77 |
return model, processor
|
| 78 |
|
|
|
|
| 79 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 80 |
"""
|
| 81 |
Returns a cached TTS model if available; otherwise, loads it.
|
| 82 |
"""
|
| 83 |
if model_name in TTS_MODELS:
|
| 84 |
return TTS_MODELS[model_name]
|
|
|
|
| 85 |
tts_model = TTS(model_name)
|
| 86 |
TTS_MODELS[model_name] = tts_model
|
| 87 |
return tts_model
|
| 88 |
|
|
|
|
| 89 |
# ---------------------------------------------------------------------
|
| 90 |
# Script Generation Function
|
| 91 |
# ---------------------------------------------------------------------
|
|
@@ -97,6 +103,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 97 |
"""
|
| 98 |
try:
|
| 99 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
|
|
| 100 |
system_prompt = (
|
| 101 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
| 102 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
@@ -105,6 +112,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 105 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
| 106 |
)
|
| 107 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
|
|
|
| 108 |
with torch.inference_mode():
|
| 109 |
result = text_pipeline(
|
| 110 |
combined_prompt,
|
|
@@ -112,14 +120,17 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 112 |
do_sample=True,
|
| 113 |
temperature=0.8
|
| 114 |
)
|
|
|
|
| 115 |
generated_text = result[0]["generated_text"]
|
| 116 |
if "Output:" in generated_text:
|
| 117 |
generated_text = generated_text.split("Output:")[-1].strip()
|
|
|
|
| 118 |
# Default placeholders
|
| 119 |
voice_script = "No voice-over script found."
|
| 120 |
sound_design = "No sound design suggestions found."
|
| 121 |
music_suggestions = "No music suggestions found."
|
| 122 |
-
|
|
|
|
| 123 |
if "Voice-Over Script:" in generated_text:
|
| 124 |
parts = generated_text.split("Voice-Over Script:")
|
| 125 |
voice_script_part = parts[1]
|
|
@@ -127,6 +138,8 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 127 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
| 128 |
else:
|
| 129 |
voice_script = voice_script_part.strip()
|
|
|
|
|
|
|
| 130 |
if "Sound Design Suggestions:" in generated_text:
|
| 131 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 132 |
sound_design_part = parts[1]
|
|
@@ -134,43 +147,17 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 134 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
| 135 |
else:
|
| 136 |
sound_design = sound_design_part.strip()
|
|
|
|
|
|
|
| 137 |
if "Music Suggestions:" in generated_text:
|
| 138 |
parts = generated_text.split("Music Suggestions:")
|
| 139 |
music_suggestions = parts[1].strip()
|
|
|
|
| 140 |
return voice_script, sound_design, music_suggestions
|
|
|
|
| 141 |
except Exception as e:
|
| 142 |
return f"Error generating script: {e}", "", ""
|
| 143 |
|
| 144 |
-
# ---------------------------------------------------------------------
|
| 145 |
-
# Ad Promo Idea Generation Function
|
| 146 |
-
# ---------------------------------------------------------------------
|
| 147 |
-
@spaces.GPU(duration=100)
|
| 148 |
-
def generate_ad_promo_idea(user_prompt: str, model_id: str, token: str):
|
| 149 |
-
"""
|
| 150 |
-
Generates a creative ad promo idea based on the user's concept.
|
| 151 |
-
Returns a string containing the ad promo idea.
|
| 152 |
-
"""
|
| 153 |
-
try:
|
| 154 |
-
text_pipeline = get_llama_pipeline(model_id, token)
|
| 155 |
-
system_prompt = (
|
| 156 |
-
"You are a creative advertising strategist. "
|
| 157 |
-
"Generate a unique and engaging ad promo idea based on the following concept. "
|
| 158 |
-
"Include creative angles, potential taglines, and media suggestions."
|
| 159 |
-
)
|
| 160 |
-
combined_prompt = f"{system_prompt}\nConcept: {user_prompt}\nAd Promo Idea:"
|
| 161 |
-
with torch.inference_mode():
|
| 162 |
-
result = text_pipeline(
|
| 163 |
-
combined_prompt,
|
| 164 |
-
max_new_tokens=150,
|
| 165 |
-
do_sample=True,
|
| 166 |
-
temperature=0.8
|
| 167 |
-
)
|
| 168 |
-
generated_text = result[0]["generated_text"]
|
| 169 |
-
if "Ad Promo Idea:" in generated_text:
|
| 170 |
-
generated_text = generated_text.split("Ad Promo Idea:")[-1].strip()
|
| 171 |
-
return generated_text
|
| 172 |
-
except Exception as e:
|
| 173 |
-
return f"Error generating ad promo idea: {e}"
|
| 174 |
|
| 175 |
# ---------------------------------------------------------------------
|
| 176 |
# Voice-Over Generation Function
|
|
@@ -184,14 +171,21 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
| 184 |
try:
|
| 185 |
if not script.strip():
|
| 186 |
return "Error: No script provided."
|
|
|
|
|
|
|
| 187 |
cleaned_script = clean_text(script)
|
|
|
|
| 188 |
tts_model = get_tts_model(tts_model_name)
|
|
|
|
|
|
|
| 189 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 190 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 191 |
return output_path
|
|
|
|
| 192 |
except Exception as e:
|
| 193 |
return f"Error generating voice: {e}"
|
| 194 |
|
|
|
|
| 195 |
# ---------------------------------------------------------------------
|
| 196 |
# Music Generation Function
|
| 197 |
# ---------------------------------------------------------------------
|
|
@@ -204,23 +198,30 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 204 |
try:
|
| 205 |
if not prompt.strip():
|
| 206 |
return "Error: No music suggestion provided."
|
|
|
|
| 207 |
model_key = "facebook/musicgen-large"
|
| 208 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
|
|
|
| 209 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 210 |
# Process the input and move each tensor to the proper device
|
| 211 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
| 212 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
| 213 |
with torch.inference_mode():
|
| 214 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
| 215 |
-
|
| 216 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 217 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
|
|
|
| 218 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
| 219 |
write(output_path, 44100, normalized_audio)
|
|
|
|
| 220 |
return output_path
|
|
|
|
| 221 |
except Exception as e:
|
| 222 |
return f"Error generating music: {e}"
|
| 223 |
|
|
|
|
| 224 |
# ---------------------------------------------------------------------
|
| 225 |
# Audio Blending with Duration Sync & Ducking
|
| 226 |
# ---------------------------------------------------------------------
|
|
@@ -228,33 +229,46 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 228 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
| 229 |
"""
|
| 230 |
Blends two audio files (voice and music).
|
|
|
|
|
|
|
|
|
|
| 231 |
Returns the file path to the blended .wav file.
|
| 232 |
"""
|
| 233 |
try:
|
| 234 |
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
| 235 |
return "Error: Missing audio files for blending."
|
|
|
|
| 236 |
voice = AudioSegment.from_wav(voice_path)
|
| 237 |
music = AudioSegment.from_wav(music_path)
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
| 240 |
if music_len < voice_len:
|
| 241 |
looped_music = AudioSegment.empty()
|
| 242 |
while len(looped_music) < voice_len:
|
| 243 |
looped_music += music
|
| 244 |
music = looped_music
|
|
|
|
|
|
|
| 245 |
if len(music) > voice_len:
|
| 246 |
music = music[:voice_len]
|
|
|
|
| 247 |
if ducking:
|
| 248 |
ducked_music = music - duck_level
|
| 249 |
final_audio = ducked_music.overlay(voice)
|
| 250 |
else:
|
| 251 |
final_audio = music.overlay(voice)
|
|
|
|
| 252 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
| 253 |
final_audio.export(output_path, format="wav")
|
| 254 |
return output_path
|
|
|
|
| 255 |
except Exception as e:
|
| 256 |
return f"Error blending audio: {e}"
|
| 257 |
|
|
|
|
| 258 |
# ---------------------------------------------------------------------
|
| 259 |
# Gradio Interface with Enhanced UI
|
| 260 |
# ---------------------------------------------------------------------
|
|
@@ -274,23 +288,19 @@ with gr.Blocks(css="""
|
|
| 274 |
}
|
| 275 |
.header h1 {
|
| 276 |
margin: 0;
|
| 277 |
-
font-size: 2.
|
| 278 |
}
|
| 279 |
.header p {
|
| 280 |
font-size: 1.2rem;
|
| 281 |
}
|
| 282 |
-
.instructions {
|
| 283 |
-
background-color: #2e2e2e;
|
| 284 |
-
border-radius: 8px;
|
| 285 |
-
padding: 1rem;
|
| 286 |
-
margin-bottom: 1rem;
|
| 287 |
-
font-size: 0.95rem;
|
| 288 |
-
}
|
| 289 |
.gradio-container {
|
| 290 |
background: #2e2e2e;
|
| 291 |
border-radius: 10px;
|
| 292 |
padding: 1rem;
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
| 294 |
}
|
| 295 |
.footer {
|
| 296 |
text-align: center;
|
|
@@ -299,64 +309,31 @@ with gr.Blocks(css="""
|
|
| 299 |
padding: 1rem;
|
| 300 |
color: #cccccc;
|
| 301 |
}
|
| 302 |
-
.btn-clear {
|
| 303 |
-
margin-left: 1rem;
|
| 304 |
-
background: #ff5555;
|
| 305 |
-
color: #fff;
|
| 306 |
-
}
|
| 307 |
""") as demo:
|
| 308 |
|
| 309 |
# Custom Header
|
| 310 |
with gr.Row(elem_classes="header"):
|
| 311 |
gr.Markdown("""
|
| 312 |
-
<h1>🎧 AI
|
| 313 |
-
<p>Your all-in-one AI solution for crafting engaging audio
|
| 314 |
""")
|
| 315 |
|
| 316 |
gr.Markdown("""
|
| 317 |
-
Welcome to **AI
|
| 318 |
-
|
| 319 |
-
- **
|
| 320 |
-
- **Voice-
|
| 321 |
-
- **
|
| 322 |
-
- **
|
| 323 |
-
- **Blended Audio Ads**
|
| 324 |
""")
|
| 325 |
|
| 326 |
with gr.Tabs():
|
| 327 |
-
#
|
| 328 |
-
with gr.Tab("💡 Ad Promo Idea"):
|
| 329 |
-
gr.Markdown("Enter a concept for your ad and let the system generate a creative ad promo idea with taglines and media suggestions.")
|
| 330 |
-
with gr.Row():
|
| 331 |
-
ad_concept = gr.Textbox(
|
| 332 |
-
label="Ad Concept",
|
| 333 |
-
placeholder="E.g., A vibrant summer sale for a trendy clothing brand...",
|
| 334 |
-
lines=2
|
| 335 |
-
)
|
| 336 |
-
with gr.Row():
|
| 337 |
-
llama_model_id_idea = gr.Textbox(
|
| 338 |
-
label="LLaMA Model ID",
|
| 339 |
-
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 340 |
-
placeholder="Enter a valid Hugging Face model ID"
|
| 341 |
-
)
|
| 342 |
-
with gr.Row():
|
| 343 |
-
generate_ad_idea_button = gr.Button("Generate Ad Promo Idea", variant="primary")
|
| 344 |
-
clear_ad_idea = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
| 345 |
-
ad_idea_output = gr.Textbox(label="Generated Ad Promo Idea", lines=5, interactive=False)
|
| 346 |
-
generate_ad_idea_button.click(
|
| 347 |
-
fn=lambda concept, model_id: generate_ad_promo_idea(concept, model_id, HF_TOKEN),
|
| 348 |
-
inputs=[ad_concept, llama_model_id_idea],
|
| 349 |
-
outputs=ad_idea_output
|
| 350 |
-
)
|
| 351 |
-
clear_ad_idea.click(fn=lambda: "", inputs=None, outputs=ad_idea_output)
|
| 352 |
-
|
| 353 |
-
# Tab 2: Script Generation
|
| 354 |
with gr.Tab("📝 Script Generation"):
|
| 355 |
-
gr.Markdown("Generate a voice-over script along with sound design and music suggestions based on your promo idea.")
|
| 356 |
with gr.Row():
|
| 357 |
user_prompt = gr.Textbox(
|
| 358 |
label="Promo Idea",
|
| 359 |
-
placeholder="E.g., A 30-second
|
| 360 |
lines=2
|
| 361 |
)
|
| 362 |
with gr.Row():
|
|
@@ -372,22 +349,20 @@ with gr.Blocks(css="""
|
|
| 372 |
step=15,
|
| 373 |
value=30
|
| 374 |
)
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
clear_script = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
| 378 |
-
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
| 379 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 380 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
|
|
|
| 381 |
generate_script_button.click(
|
| 382 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
| 383 |
inputs=[user_prompt, llama_model_id, duration],
|
| 384 |
-
outputs=[script_output, sound_design_output, music_suggestion_output]
|
| 385 |
)
|
| 386 |
-
clear_script.click(fn=lambda: ["", "", ""], inputs=None, outputs=[script_output, sound_design_output, music_suggestion_output])
|
| 387 |
|
| 388 |
-
#
|
| 389 |
with gr.Tab("🎤 Voice Synthesis"):
|
| 390 |
-
gr.Markdown("
|
| 391 |
selected_tts_model = gr.Dropdown(
|
| 392 |
label="TTS Model",
|
| 393 |
choices=[
|
|
@@ -398,19 +373,18 @@ with gr.Blocks(css="""
|
|
| 398 |
value="tts_models/en/ljspeech/tacotron2-DDC",
|
| 399 |
multiselect=False
|
| 400 |
)
|
| 401 |
-
|
| 402 |
-
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
| 403 |
-
clear_voice = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
| 404 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
|
|
|
| 405 |
generate_voice_button.click(
|
| 406 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
| 407 |
-
inputs=script_output,
|
|
|
|
| 408 |
)
|
| 409 |
-
clear_voice.click(fn=lambda: "", inputs=None, outputs=voice_audio_output)
|
| 410 |
|
| 411 |
-
#
|
| 412 |
with gr.Tab("🎶 Music Production"):
|
| 413 |
-
gr.Markdown("Generate a custom music track
|
| 414 |
audio_length = gr.Slider(
|
| 415 |
label="Music Length (tokens)",
|
| 416 |
minimum=128,
|
|
@@ -419,20 +393,18 @@ with gr.Blocks(css="""
|
|
| 419 |
value=512,
|
| 420 |
info="Increase tokens for longer audio (inference time may vary)."
|
| 421 |
)
|
| 422 |
-
|
| 423 |
-
generate_music_button = gr.Button("Generate Music", variant="primary")
|
| 424 |
-
clear_music = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
| 425 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
|
|
|
| 426 |
generate_music_button.click(
|
| 427 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
| 428 |
inputs=[music_suggestion_output, audio_length],
|
| 429 |
-
outputs=[music_output]
|
| 430 |
)
|
| 431 |
-
clear_music.click(fn=lambda: "", inputs=None, outputs=music_output)
|
| 432 |
|
| 433 |
-
#
|
| 434 |
with gr.Tab("🎚️ Audio Blending"):
|
| 435 |
-
gr.Markdown("Blend your voice-over and music track. Music will be
|
| 436 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 437 |
duck_level_slider = gr.Slider(
|
| 438 |
label="Ducking Level (dB attenuation)",
|
|
@@ -441,16 +413,14 @@ with gr.Blocks(css="""
|
|
| 441 |
step=1,
|
| 442 |
value=10
|
| 443 |
)
|
| 444 |
-
|
| 445 |
-
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
| 446 |
-
clear_blend = gr.Button("Clear", variant="stop", elem_classes="btn-clear")
|
| 447 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
|
|
|
| 448 |
blend_button.click(
|
| 449 |
fn=blend_audio,
|
| 450 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
| 451 |
outputs=blended_output
|
| 452 |
)
|
| 453 |
-
clear_blend.click(fn=lambda: "", inputs=None, outputs=blended_output)
|
| 454 |
|
| 455 |
# Footer
|
| 456 |
gr.Markdown("""
|
|
@@ -458,10 +428,11 @@ with gr.Blocks(css="""
|
|
| 458 |
<hr>
|
| 459 |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
| 460 |
<br>
|
| 461 |
-
<small>AI
|
| 462 |
</div>
|
| 463 |
""")
|
| 464 |
|
|
|
|
| 465 |
gr.HTML("""
|
| 466 |
<div style="text-align: center; margin-top: 1rem;">
|
| 467 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
|
@@ -471,4 +442,3 @@ with gr.Blocks(css="""
|
|
| 471 |
""")
|
| 472 |
|
| 473 |
demo.launch(debug=True)
|
| 474 |
-
|
|
|
|
| 50 |
"""
|
| 51 |
if model_id in LLAMA_PIPELINES:
|
| 52 |
return LLAMA_PIPELINES[model_id]
|
| 53 |
+
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 55 |
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
model_id,
|
|
|
|
| 63 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
| 64 |
return text_pipeline
|
| 65 |
|
| 66 |
+
|
| 67 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
| 68 |
"""
|
| 69 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
|
|
| 71 |
"""
|
| 72 |
if model_key in MUSICGEN_MODELS:
|
| 73 |
return MUSICGEN_MODELS[model_key]
|
| 74 |
+
|
| 75 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
| 76 |
processor = AutoProcessor.from_pretrained(model_key)
|
| 77 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 79 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
| 80 |
return model, processor
|
| 81 |
|
| 82 |
+
|
| 83 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 84 |
"""
|
| 85 |
Returns a cached TTS model if available; otherwise, loads it.
|
| 86 |
"""
|
| 87 |
if model_name in TTS_MODELS:
|
| 88 |
return TTS_MODELS[model_name]
|
| 89 |
+
|
| 90 |
tts_model = TTS(model_name)
|
| 91 |
TTS_MODELS[model_name] = tts_model
|
| 92 |
return tts_model
|
| 93 |
|
| 94 |
+
|
| 95 |
# ---------------------------------------------------------------------
|
| 96 |
# Script Generation Function
|
| 97 |
# ---------------------------------------------------------------------
|
|
|
|
| 103 |
"""
|
| 104 |
try:
|
| 105 |
text_pipeline = get_llama_pipeline(model_id, token)
|
| 106 |
+
|
| 107 |
system_prompt = (
|
| 108 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
| 109 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
|
|
| 112 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
| 113 |
)
|
| 114 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
| 115 |
+
|
| 116 |
with torch.inference_mode():
|
| 117 |
result = text_pipeline(
|
| 118 |
combined_prompt,
|
|
|
|
| 120 |
do_sample=True,
|
| 121 |
temperature=0.8
|
| 122 |
)
|
| 123 |
+
|
| 124 |
generated_text = result[0]["generated_text"]
|
| 125 |
if "Output:" in generated_text:
|
| 126 |
generated_text = generated_text.split("Output:")[-1].strip()
|
| 127 |
+
|
| 128 |
# Default placeholders
|
| 129 |
voice_script = "No voice-over script found."
|
| 130 |
sound_design = "No sound design suggestions found."
|
| 131 |
music_suggestions = "No music suggestions found."
|
| 132 |
+
|
| 133 |
+
# Voice-Over Script
|
| 134 |
if "Voice-Over Script:" in generated_text:
|
| 135 |
parts = generated_text.split("Voice-Over Script:")
|
| 136 |
voice_script_part = parts[1]
|
|
|
|
| 138 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
| 139 |
else:
|
| 140 |
voice_script = voice_script_part.strip()
|
| 141 |
+
|
| 142 |
+
# Sound Design
|
| 143 |
if "Sound Design Suggestions:" in generated_text:
|
| 144 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 145 |
sound_design_part = parts[1]
|
|
|
|
| 147 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
| 148 |
else:
|
| 149 |
sound_design = sound_design_part.strip()
|
| 150 |
+
|
| 151 |
+
# Music Suggestions
|
| 152 |
if "Music Suggestions:" in generated_text:
|
| 153 |
parts = generated_text.split("Music Suggestions:")
|
| 154 |
music_suggestions = parts[1].strip()
|
| 155 |
+
|
| 156 |
return voice_script, sound_design, music_suggestions
|
| 157 |
+
|
| 158 |
except Exception as e:
|
| 159 |
return f"Error generating script: {e}", "", ""
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
# ---------------------------------------------------------------------
|
| 163 |
# Voice-Over Generation Function
|
|
|
|
| 171 |
try:
|
| 172 |
if not script.strip():
|
| 173 |
return "Error: No script provided."
|
| 174 |
+
|
| 175 |
+
# Clean the script to remove special characters (e.g., asterisks) that may produce warnings
|
| 176 |
cleaned_script = clean_text(script)
|
| 177 |
+
|
| 178 |
tts_model = get_tts_model(tts_model_name)
|
| 179 |
+
|
| 180 |
+
# Generate and save voice
|
| 181 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 182 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 183 |
return output_path
|
| 184 |
+
|
| 185 |
except Exception as e:
|
| 186 |
return f"Error generating voice: {e}"
|
| 187 |
|
| 188 |
+
|
| 189 |
# ---------------------------------------------------------------------
|
| 190 |
# Music Generation Function
|
| 191 |
# ---------------------------------------------------------------------
|
|
|
|
| 198 |
try:
|
| 199 |
if not prompt.strip():
|
| 200 |
return "Error: No music suggestion provided."
|
| 201 |
+
|
| 202 |
model_key = "facebook/musicgen-large"
|
| 203 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
| 204 |
+
|
| 205 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 206 |
# Process the input and move each tensor to the proper device
|
| 207 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
| 208 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 209 |
+
|
| 210 |
with torch.inference_mode():
|
| 211 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
| 212 |
+
|
| 213 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 214 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
| 215 |
+
|
| 216 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
| 217 |
write(output_path, 44100, normalized_audio)
|
| 218 |
+
|
| 219 |
return output_path
|
| 220 |
+
|
| 221 |
except Exception as e:
|
| 222 |
return f"Error generating music: {e}"
|
| 223 |
|
| 224 |
+
|
| 225 |
# ---------------------------------------------------------------------
|
| 226 |
# Audio Blending with Duration Sync & Ducking
|
| 227 |
# ---------------------------------------------------------------------
|
|
|
|
| 229 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
| 230 |
"""
|
| 231 |
Blends two audio files (voice and music).
|
| 232 |
+
1. If music < voice, loops the music until it meets/exceeds the voice duration.
|
| 233 |
+
2. If music > voice, trims music to the voice duration.
|
| 234 |
+
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
|
| 235 |
Returns the file path to the blended .wav file.
|
| 236 |
"""
|
| 237 |
try:
|
| 238 |
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
| 239 |
return "Error: Missing audio files for blending."
|
| 240 |
+
|
| 241 |
voice = AudioSegment.from_wav(voice_path)
|
| 242 |
music = AudioSegment.from_wav(music_path)
|
| 243 |
+
|
| 244 |
+
voice_len = len(voice) # in milliseconds
|
| 245 |
+
music_len = len(music) # in milliseconds
|
| 246 |
+
|
| 247 |
+
# Loop music if it's shorter than the voice
|
| 248 |
if music_len < voice_len:
|
| 249 |
looped_music = AudioSegment.empty()
|
| 250 |
while len(looped_music) < voice_len:
|
| 251 |
looped_music += music
|
| 252 |
music = looped_music
|
| 253 |
+
|
| 254 |
+
# Trim music if it's longer than the voice
|
| 255 |
if len(music) > voice_len:
|
| 256 |
music = music[:voice_len]
|
| 257 |
+
|
| 258 |
if ducking:
|
| 259 |
ducked_music = music - duck_level
|
| 260 |
final_audio = ducked_music.overlay(voice)
|
| 261 |
else:
|
| 262 |
final_audio = music.overlay(voice)
|
| 263 |
+
|
| 264 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
| 265 |
final_audio.export(output_path, format="wav")
|
| 266 |
return output_path
|
| 267 |
+
|
| 268 |
except Exception as e:
|
| 269 |
return f"Error blending audio: {e}"
|
| 270 |
|
| 271 |
+
|
| 272 |
# ---------------------------------------------------------------------
|
| 273 |
# Gradio Interface with Enhanced UI
|
| 274 |
# ---------------------------------------------------------------------
|
|
|
|
| 288 |
}
|
| 289 |
.header h1 {
|
| 290 |
margin: 0;
|
| 291 |
+
font-size: 2.5rem;
|
| 292 |
}
|
| 293 |
.header p {
|
| 294 |
font-size: 1.2rem;
|
| 295 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
.gradio-container {
|
| 297 |
background: #2e2e2e;
|
| 298 |
border-radius: 10px;
|
| 299 |
padding: 1rem;
|
| 300 |
+
}
|
| 301 |
+
.tab-title {
|
| 302 |
+
font-size: 1.1rem;
|
| 303 |
+
font-weight: bold;
|
| 304 |
}
|
| 305 |
.footer {
|
| 306 |
text-align: center;
|
|
|
|
| 309 |
padding: 1rem;
|
| 310 |
color: #cccccc;
|
| 311 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
""") as demo:
|
| 313 |
|
| 314 |
# Custom Header
|
| 315 |
with gr.Row(elem_classes="header"):
|
| 316 |
gr.Markdown("""
|
| 317 |
+
<h1>🎧 AI Promo Studio</h1>
|
| 318 |
+
<p>Your all-in-one AI solution for crafting engaging audio promos.</p>
|
| 319 |
""")
|
| 320 |
|
| 321 |
gr.Markdown("""
|
| 322 |
+
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
| 323 |
+
|
| 324 |
+
- **Script**: Generate a compelling voice-over script with LLaMA.
|
| 325 |
+
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
| 326 |
+
- **Music Production**: Produce custom music tracks with MusicGen.
|
| 327 |
+
- **Audio Blending**: Seamlessly blend voice and music with options for ducking.
|
|
|
|
| 328 |
""")
|
| 329 |
|
| 330 |
with gr.Tabs():
|
| 331 |
+
# Step 1: Generate Script
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
with gr.Tab("📝 Script Generation"):
|
|
|
|
| 333 |
with gr.Row():
|
| 334 |
user_prompt = gr.Textbox(
|
| 335 |
label="Promo Idea",
|
| 336 |
+
placeholder="E.g., A 30-second promo for a morning show...",
|
| 337 |
lines=2
|
| 338 |
)
|
| 339 |
with gr.Row():
|
|
|
|
| 349 |
step=15,
|
| 350 |
value=30
|
| 351 |
)
|
| 352 |
+
generate_script_button = gr.Button("Generate Script", variant="primary")
|
| 353 |
+
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
|
|
|
|
|
|
|
| 354 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 355 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 356 |
+
|
| 357 |
generate_script_button.click(
|
| 358 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
| 359 |
inputs=[user_prompt, llama_model_id, duration],
|
| 360 |
+
outputs=[script_output, sound_design_output, music_suggestion_output],
|
| 361 |
)
|
|
|
|
| 362 |
|
| 363 |
+
# Step 2: Generate Voice
|
| 364 |
with gr.Tab("🎤 Voice Synthesis"):
|
| 365 |
+
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
| 366 |
selected_tts_model = gr.Dropdown(
|
| 367 |
label="TTS Model",
|
| 368 |
choices=[
|
|
|
|
| 373 |
value="tts_models/en/ljspeech/tacotron2-DDC",
|
| 374 |
multiselect=False
|
| 375 |
)
|
| 376 |
+
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
|
|
|
|
|
|
| 377 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 378 |
+
|
| 379 |
generate_voice_button.click(
|
| 380 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
| 381 |
+
inputs=[script_output, selected_tts_model],
|
| 382 |
+
outputs=voice_audio_output,
|
| 383 |
)
|
|
|
|
| 384 |
|
| 385 |
+
# Step 3: Generate Music
|
| 386 |
with gr.Tab("🎶 Music Production"):
|
| 387 |
+
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
| 388 |
audio_length = gr.Slider(
|
| 389 |
label="Music Length (tokens)",
|
| 390 |
minimum=128,
|
|
|
|
| 393 |
value=512,
|
| 394 |
info="Increase tokens for longer audio (inference time may vary)."
|
| 395 |
)
|
| 396 |
+
generate_music_button = gr.Button("Generate Music", variant="primary")
|
|
|
|
|
|
|
| 397 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 398 |
+
|
| 399 |
generate_music_button.click(
|
| 400 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
| 401 |
inputs=[music_suggestion_output, audio_length],
|
| 402 |
+
outputs=[music_output],
|
| 403 |
)
|
|
|
|
| 404 |
|
| 405 |
+
# Step 4: Blend Audio
|
| 406 |
with gr.Tab("🎚️ Audio Blending"):
|
| 407 |
+
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
| 408 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 409 |
duck_level_slider = gr.Slider(
|
| 410 |
label="Ducking Level (dB attenuation)",
|
|
|
|
| 413 |
step=1,
|
| 414 |
value=10
|
| 415 |
)
|
| 416 |
+
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
|
|
|
|
|
|
| 417 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
| 418 |
+
|
| 419 |
blend_button.click(
|
| 420 |
fn=blend_audio,
|
| 421 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
| 422 |
outputs=blended_output
|
| 423 |
)
|
|
|
|
| 424 |
|
| 425 |
# Footer
|
| 426 |
gr.Markdown("""
|
|
|
|
| 428 |
<hr>
|
| 429 |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
| 430 |
<br>
|
| 431 |
+
<small>AI Promo Studio © 2025</small>
|
| 432 |
</div>
|
| 433 |
""")
|
| 434 |
|
| 435 |
+
# Visitor Badge
|
| 436 |
gr.HTML("""
|
| 437 |
<div style="text-align: center; margin-top: 1rem;">
|
| 438 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
|
|
|
| 442 |
""")
|
| 443 |
|
| 444 |
demo.launch(debug=True)
|
|
|