Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
import tempfile
|
|
@@ -39,7 +39,6 @@ def clean_text(text: str) -> str:
|
|
| 39 |
"""
|
| 40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
| 41 |
"""
|
| 42 |
-
# Remove all asterisks. You can add more cleaning steps here as needed.
|
| 43 |
return re.sub(r'\*', '', text)
|
| 44 |
|
| 45 |
# ---------------------------------------------------------------------
|
|
@@ -64,7 +63,6 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
| 64 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
| 65 |
return text_pipeline
|
| 66 |
|
| 67 |
-
|
| 68 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
| 69 |
"""
|
| 70 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
@@ -81,7 +79,6 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
| 81 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
| 82 |
return model, processor
|
| 83 |
|
| 84 |
-
|
| 85 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 86 |
"""
|
| 87 |
Returns a cached TTS model if available; otherwise, loads it.
|
|
@@ -93,7 +90,6 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
| 93 |
TTS_MODELS[model_name] = tts_model
|
| 94 |
return tts_model
|
| 95 |
|
| 96 |
-
|
| 97 |
# ---------------------------------------------------------------------
|
| 98 |
# Script Generation Function
|
| 99 |
# ---------------------------------------------------------------------
|
|
@@ -105,7 +101,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 105 |
"""
|
| 106 |
try:
|
| 107 |
text_pipeline = get_llama_pipeline(model_id, token)
|
| 108 |
-
|
| 109 |
system_prompt = (
|
| 110 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
| 111 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
@@ -132,7 +127,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 132 |
sound_design = "No sound design suggestions found."
|
| 133 |
music_suggestions = "No music suggestions found."
|
| 134 |
|
| 135 |
-
# Voice-Over Script
|
| 136 |
if "Voice-Over Script:" in generated_text:
|
| 137 |
parts = generated_text.split("Voice-Over Script:")
|
| 138 |
voice_script_part = parts[1]
|
|
@@ -141,7 +136,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 141 |
else:
|
| 142 |
voice_script = voice_script_part.strip()
|
| 143 |
|
| 144 |
-
# Sound Design
|
| 145 |
if "Sound Design Suggestions:" in generated_text:
|
| 146 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 147 |
sound_design_part = parts[1]
|
|
@@ -150,7 +145,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 150 |
else:
|
| 151 |
sound_design = sound_design_part.strip()
|
| 152 |
|
| 153 |
-
# Music Suggestions
|
| 154 |
if "Music Suggestions:" in generated_text:
|
| 155 |
parts = generated_text.split("Music Suggestions:")
|
| 156 |
music_suggestions = parts[1].strip()
|
|
@@ -160,7 +155,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 160 |
except Exception as e:
|
| 161 |
return f"Error generating script: {e}", "", ""
|
| 162 |
|
| 163 |
-
|
| 164 |
# ---------------------------------------------------------------------
|
| 165 |
# Voice-Over Generation Function
|
| 166 |
# ---------------------------------------------------------------------
|
|
@@ -174,12 +168,8 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
| 174 |
if not script.strip():
|
| 175 |
return "Error: No script provided."
|
| 176 |
|
| 177 |
-
# Clean the script to remove special characters (e.g., asterisks) that may produce warnings
|
| 178 |
cleaned_script = clean_text(script)
|
| 179 |
-
|
| 180 |
tts_model = get_tts_model(tts_model_name)
|
| 181 |
-
|
| 182 |
-
# Generate and save voice
|
| 183 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 184 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 185 |
return output_path
|
|
@@ -187,7 +177,6 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
| 187 |
except Exception as e:
|
| 188 |
return f"Error generating voice: {e}"
|
| 189 |
|
| 190 |
-
|
| 191 |
# ---------------------------------------------------------------------
|
| 192 |
# Music Generation Function
|
| 193 |
# ---------------------------------------------------------------------
|
|
@@ -205,23 +194,22 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 205 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
| 206 |
|
| 207 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 208 |
-
|
|
|
|
|
|
|
| 209 |
|
| 210 |
with torch.inference_mode():
|
| 211 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
| 212 |
|
| 213 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 214 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
| 215 |
-
|
| 216 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
| 217 |
write(output_path, 44100, normalized_audio)
|
| 218 |
-
|
| 219 |
return output_path
|
| 220 |
|
| 221 |
except Exception as e:
|
| 222 |
return f"Error generating music: {e}"
|
| 223 |
|
| 224 |
-
|
| 225 |
# ---------------------------------------------------------------------
|
| 226 |
# Audio Blending with Duration Sync & Ducking
|
| 227 |
# ---------------------------------------------------------------------
|
|
@@ -241,17 +229,15 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
| 241 |
voice = AudioSegment.from_wav(voice_path)
|
| 242 |
music = AudioSegment.from_wav(music_path)
|
| 243 |
|
| 244 |
-
voice_len = len(voice)
|
| 245 |
-
music_len = len(music)
|
| 246 |
|
| 247 |
-
# Loop music if it's shorter than the voice
|
| 248 |
if music_len < voice_len:
|
| 249 |
looped_music = AudioSegment.empty()
|
| 250 |
while len(looped_music) < voice_len:
|
| 251 |
looped_music += music
|
| 252 |
music = looped_music
|
| 253 |
|
| 254 |
-
# Trim music if it's longer than the voice
|
| 255 |
if len(music) > voice_len:
|
| 256 |
music = music[:voice_len]
|
| 257 |
|
|
@@ -268,6 +254,28 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
| 268 |
except Exception as e:
|
| 269 |
return f"Error blending audio: {e}"
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
# ---------------------------------------------------------------------
|
| 273 |
# Gradio Interface with Enhanced UI
|
|
@@ -314,12 +322,12 @@ with gr.Blocks(css="""
|
|
| 314 |
# Custom Header
|
| 315 |
with gr.Row(elem_classes="header"):
|
| 316 |
gr.Markdown("""
|
| 317 |
-
<h1>π§ AI
|
| 318 |
-
<p>Your all-in-one AI solution for crafting engaging audio
|
| 319 |
""")
|
| 320 |
|
| 321 |
gr.Markdown("""
|
| 322 |
-
Welcome to **AI
|
| 323 |
|
| 324 |
- **Script**: Generate a compelling voice-over script with LLaMA.
|
| 325 |
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
|
@@ -328,7 +336,7 @@ with gr.Blocks(css="""
|
|
| 328 |
""")
|
| 329 |
|
| 330 |
with gr.Tabs():
|
| 331 |
-
#
|
| 332 |
with gr.Tab("π Script Generation"):
|
| 333 |
with gr.Row():
|
| 334 |
user_prompt = gr.Textbox(
|
|
@@ -360,7 +368,7 @@ with gr.Blocks(css="""
|
|
| 360 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
| 361 |
)
|
| 362 |
|
| 363 |
-
#
|
| 364 |
with gr.Tab("π€ Voice Synthesis"):
|
| 365 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
| 366 |
selected_tts_model = gr.Dropdown(
|
|
@@ -382,7 +390,7 @@ with gr.Blocks(css="""
|
|
| 382 |
outputs=voice_audio_output,
|
| 383 |
)
|
| 384 |
|
| 385 |
-
#
|
| 386 |
with gr.Tab("πΆ Music Production"):
|
| 387 |
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
| 388 |
audio_length = gr.Slider(
|
|
@@ -402,7 +410,7 @@ with gr.Blocks(css="""
|
|
| 402 |
outputs=[music_output],
|
| 403 |
)
|
| 404 |
|
| 405 |
-
#
|
| 406 |
with gr.Tab("ποΈ Audio Blending"):
|
| 407 |
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
| 408 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
|
@@ -422,17 +430,70 @@ with gr.Blocks(css="""
|
|
| 422 |
outputs=blended_output
|
| 423 |
)
|
| 424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
# Footer
|
| 426 |
gr.Markdown("""
|
| 427 |
<div class="footer">
|
| 428 |
<hr>
|
| 429 |
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
| 430 |
<br>
|
| 431 |
-
<small>AI
|
| 432 |
</div>
|
| 433 |
""")
|
| 434 |
|
| 435 |
-
# Visitor Badge
|
| 436 |
gr.HTML("""
|
| 437 |
<div style="text-align: center; margin-top: 1rem;">
|
| 438 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|
|
|
|
| 1 |
+
import os
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
import tempfile
|
|
|
|
| 39 |
"""
|
| 40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
| 41 |
"""
|
|
|
|
| 42 |
return re.sub(r'\*', '', text)
|
| 43 |
|
| 44 |
# ---------------------------------------------------------------------
|
|
|
|
| 63 |
LLAMA_PIPELINES[model_id] = text_pipeline
|
| 64 |
return text_pipeline
|
| 65 |
|
|
|
|
| 66 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
| 67 |
"""
|
| 68 |
Returns a cached MusicGen model if available; otherwise, loads it.
|
|
|
|
| 79 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
| 80 |
return model, processor
|
| 81 |
|
|
|
|
| 82 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 83 |
"""
|
| 84 |
Returns a cached TTS model if available; otherwise, loads it.
|
|
|
|
| 90 |
TTS_MODELS[model_name] = tts_model
|
| 91 |
return tts_model
|
| 92 |
|
|
|
|
| 93 |
# ---------------------------------------------------------------------
|
| 94 |
# Script Generation Function
|
| 95 |
# ---------------------------------------------------------------------
|
|
|
|
| 101 |
"""
|
| 102 |
try:
|
| 103 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
|
|
| 104 |
system_prompt = (
|
| 105 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
| 106 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
|
|
| 127 |
sound_design = "No sound design suggestions found."
|
| 128 |
music_suggestions = "No music suggestions found."
|
| 129 |
|
| 130 |
+
# Extract Voice-Over Script
|
| 131 |
if "Voice-Over Script:" in generated_text:
|
| 132 |
parts = generated_text.split("Voice-Over Script:")
|
| 133 |
voice_script_part = parts[1]
|
|
|
|
| 136 |
else:
|
| 137 |
voice_script = voice_script_part.strip()
|
| 138 |
|
| 139 |
+
# Extract Sound Design Suggestions
|
| 140 |
if "Sound Design Suggestions:" in generated_text:
|
| 141 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 142 |
sound_design_part = parts[1]
|
|
|
|
| 145 |
else:
|
| 146 |
sound_design = sound_design_part.strip()
|
| 147 |
|
| 148 |
+
# Extract Music Suggestions
|
| 149 |
if "Music Suggestions:" in generated_text:
|
| 150 |
parts = generated_text.split("Music Suggestions:")
|
| 151 |
music_suggestions = parts[1].strip()
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
return f"Error generating script: {e}", "", ""
|
| 157 |
|
|
|
|
| 158 |
# ---------------------------------------------------------------------
|
| 159 |
# Voice-Over Generation Function
|
| 160 |
# ---------------------------------------------------------------------
|
|
|
|
| 168 |
if not script.strip():
|
| 169 |
return "Error: No script provided."
|
| 170 |
|
|
|
|
| 171 |
cleaned_script = clean_text(script)
|
|
|
|
| 172 |
tts_model = get_tts_model(tts_model_name)
|
|
|
|
|
|
|
| 173 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 174 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 175 |
return output_path
|
|
|
|
| 177 |
except Exception as e:
|
| 178 |
return f"Error generating voice: {e}"
|
| 179 |
|
|
|
|
| 180 |
# ---------------------------------------------------------------------
|
| 181 |
# Music Generation Function
|
| 182 |
# ---------------------------------------------------------------------
|
|
|
|
| 194 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
| 195 |
|
| 196 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 197 |
+
# Process the input and move each tensor to the proper device
|
| 198 |
+
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
| 199 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 200 |
|
| 201 |
with torch.inference_mode():
|
| 202 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
| 203 |
|
| 204 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 205 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
|
|
|
| 206 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
| 207 |
write(output_path, 44100, normalized_audio)
|
|
|
|
| 208 |
return output_path
|
| 209 |
|
| 210 |
except Exception as e:
|
| 211 |
return f"Error generating music: {e}"
|
| 212 |
|
|
|
|
| 213 |
# ---------------------------------------------------------------------
|
| 214 |
# Audio Blending with Duration Sync & Ducking
|
| 215 |
# ---------------------------------------------------------------------
|
|
|
|
| 229 |
voice = AudioSegment.from_wav(voice_path)
|
| 230 |
music = AudioSegment.from_wav(music_path)
|
| 231 |
|
| 232 |
+
voice_len = len(voice)
|
| 233 |
+
music_len = len(music)
|
| 234 |
|
|
|
|
| 235 |
if music_len < voice_len:
|
| 236 |
looped_music = AudioSegment.empty()
|
| 237 |
while len(looped_music) < voice_len:
|
| 238 |
looped_music += music
|
| 239 |
music = looped_music
|
| 240 |
|
|
|
|
| 241 |
if len(music) > voice_len:
|
| 242 |
music = music[:voice_len]
|
| 243 |
|
|
|
|
| 254 |
except Exception as e:
|
| 255 |
return f"Error blending audio: {e}"
|
| 256 |
|
| 257 |
+
# ---------------------------------------------------------------------
|
| 258 |
+
# Agent Function: Orchestrate the Full Workflow
|
| 259 |
+
# ---------------------------------------------------------------------
|
| 260 |
+
@spaces.GPU(duration=400)
|
| 261 |
+
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
|
| 262 |
+
"""
|
| 263 |
+
Runs the full workflow as an agent:
|
| 264 |
+
1. Generates a script (voice-over, sound design, music suggestions) from a user prompt.
|
| 265 |
+
2. Synthesizes a voice-over from the generated script.
|
| 266 |
+
3. Generates a music track based on the music suggestions.
|
| 267 |
+
4. Blends the voice and music tracks.
|
| 268 |
+
Returns a tuple with the generated script components, voice file, music file, and final blended audio.
|
| 269 |
+
"""
|
| 270 |
+
# Step 1: Generate Script
|
| 271 |
+
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
|
| 272 |
+
# Step 2: Generate Voice-Over
|
| 273 |
+
voice_file = generate_voice(voice_script, tts_model_name)
|
| 274 |
+
# Step 3: Generate Music
|
| 275 |
+
music_file = generate_music(music_suggestions, music_length)
|
| 276 |
+
# Step 4: Blend Audio
|
| 277 |
+
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
|
| 278 |
+
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
|
| 279 |
|
| 280 |
# ---------------------------------------------------------------------
|
| 281 |
# Gradio Interface with Enhanced UI
|
|
|
|
| 322 |
# Custom Header
|
| 323 |
with gr.Row(elem_classes="header"):
|
| 324 |
gr.Markdown("""
|
| 325 |
+
<h1>π§ AI Promo Studio</h1>
|
| 326 |
+
<p>Your all-in-one AI solution for crafting engaging audio promos.</p>
|
| 327 |
""")
|
| 328 |
|
| 329 |
gr.Markdown("""
|
| 330 |
+
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
| 331 |
|
| 332 |
- **Script**: Generate a compelling voice-over script with LLaMA.
|
| 333 |
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
|
|
|
| 336 |
""")
|
| 337 |
|
| 338 |
with gr.Tabs():
|
| 339 |
+
# Tab 1: Script Generation
|
| 340 |
with gr.Tab("π Script Generation"):
|
| 341 |
with gr.Row():
|
| 342 |
user_prompt = gr.Textbox(
|
|
|
|
| 368 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
| 369 |
)
|
| 370 |
|
| 371 |
+
# Tab 2: Voice Synthesis
|
| 372 |
with gr.Tab("π€ Voice Synthesis"):
|
| 373 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
| 374 |
selected_tts_model = gr.Dropdown(
|
|
|
|
| 390 |
outputs=voice_audio_output,
|
| 391 |
)
|
| 392 |
|
| 393 |
+
# Tab 3: Music Production
|
| 394 |
with gr.Tab("πΆ Music Production"):
|
| 395 |
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
| 396 |
audio_length = gr.Slider(
|
|
|
|
| 410 |
outputs=[music_output],
|
| 411 |
)
|
| 412 |
|
| 413 |
+
# Tab 4: Audio Blending
|
| 414 |
with gr.Tab("ποΈ Audio Blending"):
|
| 415 |
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
| 416 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
|
|
|
| 430 |
outputs=blended_output
|
| 431 |
)
|
| 432 |
|
| 433 |
+
# Tab 5: Agent β Full Workflow
|
| 434 |
+
with gr.Tab("π€ Agent"):
|
| 435 |
+
gr.Markdown("Let the agent handle everything in one go: generate the script, synthesize voice, produce music, and blend the final ad.")
|
| 436 |
+
with gr.Row():
|
| 437 |
+
agent_prompt = gr.Textbox(
|
| 438 |
+
label="Ad Promo Idea",
|
| 439 |
+
placeholder="Enter your ad promo concept...",
|
| 440 |
+
lines=2
|
| 441 |
+
)
|
| 442 |
+
with gr.Row():
|
| 443 |
+
agent_llama_model_id = gr.Textbox(
|
| 444 |
+
label="LLaMA Model ID",
|
| 445 |
+
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 446 |
+
placeholder="Enter a valid Hugging Face model ID"
|
| 447 |
+
)
|
| 448 |
+
agent_duration = gr.Slider(
|
| 449 |
+
label="Promo Duration (seconds)",
|
| 450 |
+
minimum=15, maximum=60, step=15, value=30
|
| 451 |
+
)
|
| 452 |
+
with gr.Row():
|
| 453 |
+
agent_tts_model = gr.Dropdown(
|
| 454 |
+
label="TTS Model",
|
| 455 |
+
choices=[
|
| 456 |
+
"tts_models/en/ljspeech/tacotron2-DDC",
|
| 457 |
+
"tts_models/en/ljspeech/vits",
|
| 458 |
+
"tts_models/en/sam/tacotron-DDC",
|
| 459 |
+
],
|
| 460 |
+
value="tts_models/en/ljspeech/tacotron2-DDC",
|
| 461 |
+
multiselect=False
|
| 462 |
+
)
|
| 463 |
+
agent_music_length = gr.Slider(
|
| 464 |
+
label="Music Length (tokens)",
|
| 465 |
+
minimum=128, maximum=1024, step=64, value=512
|
| 466 |
+
)
|
| 467 |
+
with gr.Row():
|
| 468 |
+
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 469 |
+
agent_duck_level = gr.Slider(
|
| 470 |
+
label="Ducking Level (dB attenuation)",
|
| 471 |
+
minimum=0, maximum=20, step=1, value=10
|
| 472 |
+
)
|
| 473 |
+
agent_run_button = gr.Button("Run Agent", variant="primary")
|
| 474 |
+
agent_script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
|
| 475 |
+
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 476 |
+
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 477 |
+
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 478 |
+
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 479 |
+
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
| 480 |
+
|
| 481 |
+
agent_run_button.click(
|
| 482 |
+
fn=run_agent,
|
| 483 |
+
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
|
| 484 |
+
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio]
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
# Footer
|
| 488 |
gr.Markdown("""
|
| 489 |
<div class="footer">
|
| 490 |
<hr>
|
| 491 |
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
| 492 |
<br>
|
| 493 |
+
<small>AI Promo Studio © 2025</small>
|
| 494 |
</div>
|
| 495 |
""")
|
| 496 |
|
|
|
|
| 497 |
gr.HTML("""
|
| 498 |
<div style="text-align: center; margin-top: 1rem;">
|
| 499 |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
|