Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
|
|
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from transformers import (
|
| 5 |
AutoTokenizer,
|
| 6 |
AutoModelForCausalLM,
|
|
@@ -29,6 +31,7 @@ MUSICGEN_MODELS = {}
|
|
| 29 |
TTS_MODELS = {}
|
| 30 |
|
| 31 |
def get_llama_pipeline(model_id: str, token: str):
|
|
|
|
| 32 |
if model_id in LLAMA_PIPELINES:
|
| 33 |
return LLAMA_PIPELINES[model_id]
|
| 34 |
|
|
@@ -45,6 +48,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
| 45 |
return text_pipeline
|
| 46 |
|
| 47 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
|
|
| 48 |
if model_key in MUSICGEN_MODELS:
|
| 49 |
return MUSICGEN_MODELS[model_key]
|
| 50 |
|
|
@@ -56,6 +60,7 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
| 56 |
return model, processor
|
| 57 |
|
| 58 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
|
|
| 59 |
if model_name in TTS_MODELS:
|
| 60 |
return TTS_MODELS[model_name]
|
| 61 |
tts_model = TTS(model_name)
|
|
@@ -67,12 +72,21 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
| 67 |
# -----------------------------------------------------------
|
| 68 |
@spaces.GPU(duration=100)
|
| 69 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
try:
|
| 71 |
text_pipeline = get_llama_pipeline(model_id, token)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:"
|
| 78 |
|
|
@@ -87,7 +101,7 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 87 |
|
| 88 |
generated_text = result[0]["generated_text"].split("Output:")[-1].strip()
|
| 89 |
|
| 90 |
-
# Parse sections
|
| 91 |
sections = {
|
| 92 |
"Voice-Over Script:": "",
|
| 93 |
"Sound Design Suggestions:": "",
|
|
@@ -99,7 +113,9 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 99 |
for section in sections:
|
| 100 |
if section in line:
|
| 101 |
current_section = section
|
|
|
|
| 102 |
line = line.replace(section, '').strip()
|
|
|
|
| 103 |
if current_section:
|
| 104 |
sections[current_section] += line + '\n'
|
| 105 |
|
|
@@ -114,19 +130,41 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 114 |
|
| 115 |
@spaces.GPU(duration=100)
|
| 116 |
def generate_voice(script: str, tts_model_name: str):
|
|
|
|
|
|
|
|
|
|
| 117 |
try:
|
| 118 |
if not script.strip():
|
| 119 |
return None
|
| 120 |
tts_model = get_tts_model(tts_model_name)
|
| 121 |
-
|
|
|
|
| 122 |
tts_model.tts_to_file(text=script, file_path=output_path)
|
| 123 |
return output_path
|
| 124 |
except Exception as e:
|
| 125 |
print(f"Voice generation error: {e}")
|
| 126 |
return None
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
@spaces.GPU(duration=100)
|
| 129 |
def generate_music(prompt: str, audio_length: int):
|
|
|
|
|
|
|
|
|
|
| 130 |
try:
|
| 131 |
model, processor = get_musicgen_model()
|
| 132 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -135,9 +173,15 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 135 |
with torch.inference_mode():
|
| 136 |
outputs = model.generate(**inputs, max_new_tokens=audio_length)
|
| 137 |
|
|
|
|
| 138 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
write(output_path, 44100, normalized_audio)
|
| 142 |
return output_path
|
| 143 |
except Exception as e:
|
|
@@ -146,24 +190,27 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 146 |
|
| 147 |
@spaces.GPU(duration=100)
|
| 148 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
try:
|
| 150 |
voice = AudioSegment.from_wav(voice_path)
|
| 151 |
music = AudioSegment.from_wav(music_path)
|
| 152 |
|
| 153 |
-
#
|
| 154 |
if len(music) < len(voice):
|
| 155 |
loops_needed = (len(voice) // len(music)) + 1
|
| 156 |
music = music * loops_needed
|
| 157 |
music = music[:len(voice)]
|
| 158 |
|
| 159 |
-
# Ducking effect
|
| 160 |
if ducking:
|
| 161 |
ducked_music = music - duck_level
|
| 162 |
final_audio = ducked_music.overlay(voice)
|
| 163 |
else:
|
| 164 |
final_audio = music.overlay(voice)
|
| 165 |
|
| 166 |
-
output_path = f"{
|
| 167 |
final_audio.export(output_path, format="wav")
|
| 168 |
return output_path
|
| 169 |
except Exception as e:
|
|
@@ -268,7 +315,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 268 |
|
| 269 |
# Main Workflow Tabs
|
| 270 |
with gr.Tabs(elem_classes="tab-nav"):
|
| 271 |
-
# Script Generation
|
| 272 |
with gr.Tab("π Script Design", elem_classes="tab-button"):
|
| 273 |
with gr.Row(equal_height=False):
|
| 274 |
with gr.Column(scale=2):
|
|
@@ -301,7 +348,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 301 |
sound_design_output = gr.Textbox(label="Sound Design", lines=3)
|
| 302 |
music_suggestion_output = gr.Textbox(label="Music Style", lines=3)
|
| 303 |
|
| 304 |
-
# Voice Production
|
| 305 |
with gr.Tab("ποΈ Voice Production", elem_classes="tab-button"):
|
| 306 |
with gr.Row():
|
| 307 |
with gr.Column(scale=1):
|
|
@@ -327,7 +374,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 327 |
waveform_options={"show_controls": True}
|
| 328 |
)
|
| 329 |
|
| 330 |
-
# Music Production
|
| 331 |
with gr.Tab("π΅ Music Design", elem_classes="tab-button"):
|
| 332 |
with gr.Row():
|
| 333 |
with gr.Column(scale=1):
|
|
@@ -349,7 +396,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 349 |
waveform_options={"show_controls": True}
|
| 350 |
)
|
| 351 |
|
| 352 |
-
# Final Mix
|
| 353 |
with gr.Tab("π Final Mix", elem_classes="tab-button"):
|
| 354 |
with gr.Row():
|
| 355 |
with gr.Column(scale=1):
|
|
@@ -375,7 +422,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 375 |
waveform_options={"show_controls": True}
|
| 376 |
)
|
| 377 |
|
| 378 |
-
# Footer
|
| 379 |
with gr.Column(elem_classes="output-card"):
|
| 380 |
gr.Markdown("""
|
| 381 |
<div style="text-align: center; padding: 1.5em 0;">
|
|
@@ -391,13 +438,26 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 391 |
</p>
|
| 392 |
""")
|
| 393 |
|
|
|
|
| 394 |
# Event Handling
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
generate_btn.click(
|
| 396 |
generate_script,
|
| 397 |
-
inputs=[user_prompt, llama_model_id,
|
| 398 |
outputs=[script_output, sound_design_output, music_suggestion_output]
|
| 399 |
)
|
| 400 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
voice_generate_btn.click(
|
| 402 |
generate_voice,
|
| 403 |
inputs=[script_output, tts_model],
|
|
@@ -417,4 +477,4 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 417 |
)
|
| 418 |
|
| 419 |
if __name__ == "__main__":
|
| 420 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import uuid
|
| 3 |
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
from transformers import (
|
| 7 |
AutoTokenizer,
|
| 8 |
AutoModelForCausalLM,
|
|
|
|
| 31 |
TTS_MODELS = {}
|
| 32 |
|
| 33 |
def get_llama_pipeline(model_id: str, token: str):
|
| 34 |
+
"""Load and cache the LLaMA text-generation pipeline."""
|
| 35 |
if model_id in LLAMA_PIPELINES:
|
| 36 |
return LLAMA_PIPELINES[model_id]
|
| 37 |
|
|
|
|
| 48 |
return text_pipeline
|
| 49 |
|
| 50 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
| 51 |
+
"""Load and cache the MusicGen model and processor."""
|
| 52 |
if model_key in MUSICGEN_MODELS:
|
| 53 |
return MUSICGEN_MODELS[model_key]
|
| 54 |
|
|
|
|
| 60 |
return model, processor
|
| 61 |
|
| 62 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 63 |
+
"""Load and cache the TTS model."""
|
| 64 |
if model_name in TTS_MODELS:
|
| 65 |
return TTS_MODELS[model_name]
|
| 66 |
tts_model = TTS(model_name)
|
|
|
|
| 72 |
# -----------------------------------------------------------
|
| 73 |
@spaces.GPU(duration=100)
|
| 74 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
| 75 |
+
"""
|
| 76 |
+
Generate a professional promo script including a voice-over script,
|
| 77 |
+
sound design suggestions, and music recommendations.
|
| 78 |
+
"""
|
| 79 |
try:
|
| 80 |
text_pipeline = get_llama_pipeline(model_id, token)
|
| 81 |
+
# Updated prompt to instruct the model to output sections with explicit headers.
|
| 82 |
+
system_prompt = (
|
| 83 |
+
f"You are a professional audio producer creating {duration}-second content. "
|
| 84 |
+
"Please generate the following three sections exactly as shown:\n\n"
|
| 85 |
+
"Voice-Over Script: [A clear and concise script for the voiceover.]\n"
|
| 86 |
+
"Sound Design Suggestions: [Specific ideas, effects, and ambience recommendations.]\n"
|
| 87 |
+
"Music Suggestions: [Recommendations for music style, genre, and tempo.]\n\n"
|
| 88 |
+
"Make sure each section starts with its header exactly."
|
| 89 |
+
)
|
| 90 |
|
| 91 |
full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:"
|
| 92 |
|
|
|
|
| 101 |
|
| 102 |
generated_text = result[0]["generated_text"].split("Output:")[-1].strip()
|
| 103 |
|
| 104 |
+
# Parse the output into the three expected sections.
|
| 105 |
sections = {
|
| 106 |
"Voice-Over Script:": "",
|
| 107 |
"Sound Design Suggestions:": "",
|
|
|
|
| 113 |
for section in sections:
|
| 114 |
if section in line:
|
| 115 |
current_section = section
|
| 116 |
+
# Remove header from the line.
|
| 117 |
line = line.replace(section, '').strip()
|
| 118 |
+
break
|
| 119 |
if current_section:
|
| 120 |
sections[current_section] += line + '\n'
|
| 121 |
|
|
|
|
| 130 |
|
| 131 |
@spaces.GPU(duration=100)
|
| 132 |
def generate_voice(script: str, tts_model_name: str):
|
| 133 |
+
"""
|
| 134 |
+
Generate full voice-over audio from the provided script using a TTS model.
|
| 135 |
+
"""
|
| 136 |
try:
|
| 137 |
if not script.strip():
|
| 138 |
return None
|
| 139 |
tts_model = get_tts_model(tts_model_name)
|
| 140 |
+
# Create a unique temporary file name for the output.
|
| 141 |
+
output_path = os.path.join(tempfile.gettempdir(), f"voice_{uuid.uuid4().hex}.wav")
|
| 142 |
tts_model.tts_to_file(text=script, file_path=output_path)
|
| 143 |
return output_path
|
| 144 |
except Exception as e:
|
| 145 |
print(f"Voice generation error: {e}")
|
| 146 |
return None
|
| 147 |
|
| 148 |
+
@spaces.GPU(duration=100)
|
| 149 |
+
def generate_voice_preview(script: str, tts_model_name: str):
|
| 150 |
+
"""
|
| 151 |
+
Generate a short preview of the voice-over by taking the first 100 words.
|
| 152 |
+
"""
|
| 153 |
+
try:
|
| 154 |
+
if not script.strip():
|
| 155 |
+
return None
|
| 156 |
+
words = script.split()
|
| 157 |
+
preview_text = ' '.join(words[:100]) if len(words) > 100 else script
|
| 158 |
+
return generate_voice(preview_text, tts_model_name)
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"Voice preview error: {e}")
|
| 161 |
+
return None
|
| 162 |
+
|
| 163 |
@spaces.GPU(duration=100)
|
| 164 |
def generate_music(prompt: str, audio_length: int):
|
| 165 |
+
"""
|
| 166 |
+
Generate music audio from a text prompt using the MusicGen model.
|
| 167 |
+
"""
|
| 168 |
try:
|
| 169 |
model, processor = get_musicgen_model()
|
| 170 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 173 |
with torch.inference_mode():
|
| 174 |
outputs = model.generate(**inputs, max_new_tokens=audio_length)
|
| 175 |
|
| 176 |
+
# Assuming outputs[0, 0] holds the generated audio waveform.
|
| 177 |
audio_data = outputs[0, 0].cpu().numpy()
|
| 178 |
+
# Prevent division by zero during normalization.
|
| 179 |
+
max_val = np.max(np.abs(audio_data))
|
| 180 |
+
if max_val == 0:
|
| 181 |
+
normalized_audio = audio_data.astype("int16")
|
| 182 |
+
else:
|
| 183 |
+
normalized_audio = (audio_data / max_val * 32767).astype("int16")
|
| 184 |
+
output_path = os.path.join(tempfile.gettempdir(), f"music_{uuid.uuid4().hex}.wav")
|
| 185 |
write(output_path, 44100, normalized_audio)
|
| 186 |
return output_path
|
| 187 |
except Exception as e:
|
|
|
|
| 190 |
|
| 191 |
@spaces.GPU(duration=100)
|
| 192 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int):
|
| 193 |
+
"""
|
| 194 |
+
Blend the generated voice and music audio files.
|
| 195 |
+
If ducking is enabled, lower the music volume during the voice segments.
|
| 196 |
+
"""
|
| 197 |
try:
|
| 198 |
voice = AudioSegment.from_wav(voice_path)
|
| 199 |
music = AudioSegment.from_wav(music_path)
|
| 200 |
|
| 201 |
+
# Loop the music track if it's shorter than the voice track.
|
| 202 |
if len(music) < len(voice):
|
| 203 |
loops_needed = (len(voice) // len(music)) + 1
|
| 204 |
music = music * loops_needed
|
| 205 |
music = music[:len(voice)]
|
| 206 |
|
|
|
|
| 207 |
if ducking:
|
| 208 |
ducked_music = music - duck_level
|
| 209 |
final_audio = ducked_music.overlay(voice)
|
| 210 |
else:
|
| 211 |
final_audio = music.overlay(voice)
|
| 212 |
|
| 213 |
+
output_path = os.path.join(tempfile.gettempdir(), f"final_mix_{uuid.uuid4().hex}.wav")
|
| 214 |
final_audio.export(output_path, format="wav")
|
| 215 |
return output_path
|
| 216 |
except Exception as e:
|
|
|
|
| 315 |
|
| 316 |
# Main Workflow Tabs
|
| 317 |
with gr.Tabs(elem_classes="tab-nav"):
|
| 318 |
+
# Script Generation Tab
|
| 319 |
with gr.Tab("π Script Design", elem_classes="tab-button"):
|
| 320 |
with gr.Row(equal_height=False):
|
| 321 |
with gr.Column(scale=2):
|
|
|
|
| 348 |
sound_design_output = gr.Textbox(label="Sound Design", lines=3)
|
| 349 |
music_suggestion_output = gr.Textbox(label="Music Style", lines=3)
|
| 350 |
|
| 351 |
+
# Voice Production Tab
|
| 352 |
with gr.Tab("ποΈ Voice Production", elem_classes="tab-button"):
|
| 353 |
with gr.Row():
|
| 354 |
with gr.Column(scale=1):
|
|
|
|
| 374 |
waveform_options={"show_controls": True}
|
| 375 |
)
|
| 376 |
|
| 377 |
+
# Music Production Tab
|
| 378 |
with gr.Tab("π΅ Music Design", elem_classes="tab-button"):
|
| 379 |
with gr.Row():
|
| 380 |
with gr.Column(scale=1):
|
|
|
|
| 396 |
waveform_options={"show_controls": True}
|
| 397 |
)
|
| 398 |
|
| 399 |
+
# Final Mix Tab
|
| 400 |
with gr.Tab("π Final Mix", elem_classes="tab-button"):
|
| 401 |
with gr.Row():
|
| 402 |
with gr.Column(scale=1):
|
|
|
|
| 422 |
waveform_options={"show_controls": True}
|
| 423 |
)
|
| 424 |
|
| 425 |
+
# Footer Section
|
| 426 |
with gr.Column(elem_classes="output-card"):
|
| 427 |
gr.Markdown("""
|
| 428 |
<div style="text-align: center; padding: 1.5em 0;">
|
|
|
|
| 438 |
</p>
|
| 439 |
""")
|
| 440 |
|
| 441 |
+
# -----------------------------------------------------------
|
| 442 |
# Event Handling
|
| 443 |
+
# -----------------------------------------------------------
|
| 444 |
+
# Hidden textbox for HF_TOKEN (its value is set via the environment variable).
|
| 445 |
+
hf_token_hidden = gr.Textbox(value=HF_TOKEN, visible=False)
|
| 446 |
+
|
| 447 |
generate_btn.click(
|
| 448 |
generate_script,
|
| 449 |
+
inputs=[user_prompt, llama_model_id, hf_token_hidden, duration],
|
| 450 |
outputs=[script_output, sound_design_output, music_suggestion_output]
|
| 451 |
)
|
| 452 |
|
| 453 |
+
# Voice preview: generates a trimmed version of the script.
|
| 454 |
+
voice_preview_btn.click(
|
| 455 |
+
generate_voice_preview,
|
| 456 |
+
inputs=[script_output, tts_model],
|
| 457 |
+
outputs=voice_audio
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# Full voice generation using the complete script.
|
| 461 |
voice_generate_btn.click(
|
| 462 |
generate_voice,
|
| 463 |
inputs=[script_output, tts_model],
|
|
|
|
| 477 |
)
|
| 478 |
|
| 479 |
if __name__ == "__main__":
|
| 480 |
+
demo.launch(debug=True)
|