Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,165 +1,145 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
from PIL import Image
|
| 8 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
from transformers import pipeline
|
| 11 |
-
from
|
| 12 |
-
import os
|
| 13 |
|
| 14 |
-
# Load environment variables
|
| 15 |
load_dotenv()
|
| 16 |
hf_token = os.getenv("HF_TKN")
|
| 17 |
-
if hf_token:
|
| 18 |
-
login(token=hf_token)
|
| 19 |
-
|
| 20 |
-
# Device configuration
|
| 21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 23 |
-
|
| 24 |
-
# Load models
|
| 25 |
-
@spaces.GPU
|
| 26 |
-
def load_models():
|
| 27 |
-
"""Load both models with proper device placement"""
|
| 28 |
-
caption_pipe = pipeline(
|
| 29 |
-
"image-to-text",
|
| 30 |
-
model="nlpconnect/vit-gpt2-image-captioning",
|
| 31 |
-
device=device
|
| 32 |
-
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
"cvssp/audioldm2",
|
| 36 |
-
token=hf_token,
|
| 37 |
-
torch_dtype=torch_dtype
|
| 38 |
-
)
|
| 39 |
-
return caption_pipe, audio_pipe
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
results =
|
| 51 |
-
|
| 52 |
if not results or not isinstance(results, list):
|
| 53 |
-
return "Error:
|
| 54 |
-
|
| 55 |
-
caption = results[0].get("generated_text", "").strip()
|
| 56 |
-
return caption or "No caption generated", not bool(caption)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
-
return f"
|
| 60 |
|
| 61 |
@spaces.GPU(duration=120)
|
| 62 |
-
def
|
| 63 |
-
"""Generate audio from caption with resource management"""
|
| 64 |
try:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
audio_pipe.to(device)
|
| 68 |
-
|
| 69 |
-
# Generation with progress awareness
|
| 70 |
-
audio = audio_pipe(
|
| 71 |
prompt=caption,
|
| 72 |
num_inference_steps=50,
|
| 73 |
-
guidance_scale=7.5
|
| 74 |
-
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
except Exception as e:
|
| 83 |
-
print(f"
|
| 84 |
return None
|
| 85 |
-
|
| 86 |
-
finally:
|
| 87 |
-
audio_pipe.to(original_device)
|
| 88 |
-
if torch.cuda.is_available():
|
| 89 |
-
torch.cuda.empty_cache()
|
| 90 |
|
| 91 |
-
# UI Components
|
| 92 |
css = """
|
| 93 |
-
#col-container
|
| 94 |
-
max-width: 800px;
|
| 95 |
margin: 0 auto;
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
font-size: 0.9em;
|
| 99 |
-
color: #666;
|
| 100 |
-
}
|
| 101 |
"""
|
| 102 |
|
| 103 |
with gr.Blocks(css=css) as demo:
|
| 104 |
with gr.Column(elem_id="col-container"):
|
| 105 |
gr.HTML("""
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
""")
|
| 111 |
-
|
| 112 |
-
with gr.Row():
|
| 113 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 114 |
-
caption_output = gr.Textbox(label="Generated Description", interactive=False)
|
| 115 |
-
|
| 116 |
-
with gr.Row():
|
| 117 |
-
generate_btn = gr.Button("Generate Description", variant="primary")
|
| 118 |
-
audio_output = gr.Audio(label="Generated Sound", interactive=False)
|
| 119 |
-
sound_btn = gr.Button("Generate Sound", variant="secondary")
|
| 120 |
-
|
| 121 |
-
gr.Examples(
|
| 122 |
-
examples=[str(Path(__file__).parent / "examples" / f) for f in ["storm.jpg", "city.jpg"]],
|
| 123 |
-
inputs=image_input,
|
| 124 |
-
outputs=[caption_output, audio_output],
|
| 125 |
-
fn=lambda x: (analyze_image(Path(x).read_bytes())[0], None),
|
| 126 |
-
cache_examples=True
|
| 127 |
-
)
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
""")
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
| 152 |
-
fn=
|
| 153 |
-
inputs=
|
| 154 |
-
outputs=
|
| 155 |
-
api_name="generate_sound"
|
| 156 |
)
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
outputs=
|
| 162 |
)
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
demo.launch(server_name="0.0.0.0" if os.getenv("SPACE_ID") else "127.0.0.1")
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
+
import torch
|
| 7 |
+
from scipy.io.wavfile import write
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
+
from pathlib import Path
|
|
|
|
| 11 |
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
hf_token = os.getenv("HF_TKN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
captioning_pipeline = pipeline(
|
| 18 |
+
"image-to-text",
|
| 19 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
| 20 |
+
device=device_id
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 24 |
+
"cvssp/audioldm2",
|
| 25 |
+
use_auth_token=hf_token
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
@spaces.GPU(duration=120)
|
| 29 |
+
def analyze_image_with_free_model(image_file):
|
| 30 |
try:
|
| 31 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
| 32 |
+
temp_file.write(image_file)
|
| 33 |
+
temp_image_path = temp_file.name
|
| 34 |
+
|
| 35 |
+
results = captioning_pipeline(temp_image_path)
|
|
|
|
| 36 |
if not results or not isinstance(results, list):
|
| 37 |
+
return "Error: Could not generate caption.", True
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
caption = results[0].get("generated_text", "").strip()
|
| 40 |
+
if not caption:
|
| 41 |
+
return "No caption was generated.", True
|
| 42 |
+
return caption, False
|
| 43 |
+
|
| 44 |
except Exception as e:
|
| 45 |
+
return f"Error analyzing image: {e}", True
|
| 46 |
|
| 47 |
@spaces.GPU(duration=120)
|
| 48 |
+
def get_audioldm_from_caption(caption):
|
|
|
|
| 49 |
try:
|
| 50 |
+
pipe.to("cuda")
|
| 51 |
+
audio_output = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
prompt=caption,
|
| 53 |
num_inference_steps=50,
|
| 54 |
+
guidance_scale=7.5
|
| 55 |
+
)
|
| 56 |
+
pipe.to("cpu")
|
| 57 |
+
audio = audio_output.audios[0]
|
| 58 |
+
|
| 59 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
| 60 |
+
write(temp_wav.name, 16000, audio)
|
| 61 |
+
return temp_wav.name
|
| 62 |
+
|
| 63 |
except Exception as e:
|
| 64 |
+
print(f"Error generating audio from caption: {e}")
|
| 65 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
|
|
|
| 67 |
css = """
|
| 68 |
+
#col-container{
|
|
|
|
| 69 |
margin: 0 auto;
|
| 70 |
+
max-width: 800px;
|
| 71 |
+
}
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
with gr.Blocks(css=css) as demo:
|
| 75 |
with gr.Column(elem_id="col-container"):
|
| 76 |
gr.HTML("""
|
| 77 |
+
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
|
| 78 |
+
<p style="text-align: center;">
|
| 79 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
| 80 |
+
</p>
|
| 81 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
gr.Markdown("""
|
| 84 |
+
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
| 85 |
+
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
|
| 86 |
+
|
| 87 |
+
**💡 How it works:**
|
| 88 |
+
1. **Upload an image**: Choose an image that you'd like to analyze.
|
| 89 |
+
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
| 90 |
+
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
| 91 |
+
sound effect that matches the image context.
|
| 92 |
+
|
| 93 |
+
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
| 94 |
+
""")
|
| 95 |
|
| 96 |
+
image_upload = gr.File(label="Upload Image", type="binary")
|
| 97 |
+
generate_description_button = gr.Button("Generate Description")
|
| 98 |
+
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
| 99 |
+
generate_sound_button = gr.Button("Generate Sound Effect")
|
| 100 |
+
audio_output = gr.Audio(label="Generated Sound Effect")
|
|
|
|
| 101 |
|
| 102 |
+
gr.Markdown("""
|
| 103 |
+
## 👥 How You Can Contribute
|
| 104 |
+
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
| 105 |
+
to the continuous enhancement of this application.
|
| 106 |
+
|
| 107 |
+
For support, questions, or to contribute, please contact us at
|
| 108 |
+
[contact@bilsimaging.com](mailto:contact@bilsimaging.com).
|
| 109 |
+
|
| 110 |
+
Support our work and get involved by donating through
|
| 111 |
+
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
| 112 |
+
""")
|
| 113 |
+
|
| 114 |
+
gr.Markdown("""
|
| 115 |
+
## 📢 Stay Connected
|
| 116 |
+
This app is a testament to the creative possibilities that emerge when technology meets art.
|
| 117 |
+
Enjoy exploring the auditory landscape of your images!
|
| 118 |
+
""")
|
| 119 |
+
|
| 120 |
+
def update_caption(image_file):
|
| 121 |
+
description, _ = analyze_image_with_free_model(image_file)
|
| 122 |
+
return description
|
| 123 |
+
|
| 124 |
+
def generate_sound(description):
|
| 125 |
+
if not description or description.startswith("Error"):
|
| 126 |
+
return None
|
| 127 |
+
audio_path = get_audioldm_from_caption(description)
|
| 128 |
+
return audio_path
|
| 129 |
|
| 130 |
+
generate_description_button.click(
|
| 131 |
+
fn=update_caption,
|
| 132 |
+
inputs=image_upload,
|
| 133 |
+
outputs=caption_display
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
+
generate_sound_button.click(
|
| 137 |
+
fn=generate_sound,
|
| 138 |
+
inputs=caption_display,
|
| 139 |
+
outputs=audio_output
|
| 140 |
)
|
| 141 |
+
|
| 142 |
+
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
| 143 |
+
html = gr.HTML()
|
| 144 |
|
| 145 |
+
demo.launch(debug=True, share=True)
|
|
|