Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import io
|
| 3 |
import tempfile
|
| 4 |
import gradio as gr
|
| 5 |
from dotenv import load_dotenv
|
|
@@ -8,98 +8,54 @@ from scipy.io.wavfile import write
|
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
from pathlib import Path
|
| 11 |
-
from PIL import Image
|
| 12 |
-
|
| 13 |
-
import spaces
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
hf_token = os.getenv("HF_TKN")
|
| 17 |
|
| 18 |
-
# Determine if we have access to a GPU
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
device_id = 0 if torch.cuda.is_available() else -1
|
| 21 |
|
| 22 |
-
# Initialize the image captioning pipeline
|
| 23 |
captioning_pipeline = pipeline(
|
| 24 |
"image-to-text",
|
| 25 |
model="nlpconnect/vit-gpt2-image-captioning",
|
| 26 |
device=device_id
|
| 27 |
)
|
| 28 |
|
| 29 |
-
# Initialize the text-to-audio pipeline
|
| 30 |
pipe = DiffusionPipeline.from_pretrained(
|
| 31 |
"cvssp/audioldm2",
|
| 32 |
use_auth_token=hf_token
|
| 33 |
)
|
| 34 |
-
pipe.to(device)
|
| 35 |
|
| 36 |
@spaces.GPU(duration=120)
|
| 37 |
-
def analyze_image_with_free_model(image_file
|
| 38 |
-
"""
|
| 39 |
-
Analyze the uploaded image using the ViT-GPT2 image captioning pipeline.
|
| 40 |
-
|
| 41 |
-
:param image_file: Binary content of the uploaded image.
|
| 42 |
-
:return: A tuple (caption, error_flag).
|
| 43 |
-
caption (str) - The generated caption or error message.
|
| 44 |
-
error_flag (bool) - Indicates if an error occurred.
|
| 45 |
-
"""
|
| 46 |
try:
|
| 47 |
-
# Validate image input
|
| 48 |
-
if not image_file:
|
| 49 |
-
return "Error: No image data received.", True
|
| 50 |
-
|
| 51 |
-
# Check if the file is a valid image
|
| 52 |
-
try:
|
| 53 |
-
Image.open(io.BytesIO(image_file)).verify()
|
| 54 |
-
except Exception:
|
| 55 |
-
return "Error: Invalid image file. Please upload a valid image.", True
|
| 56 |
-
|
| 57 |
-
# Write the valid image to a temporary file for the pipeline
|
| 58 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
| 59 |
temp_file.write(image_file)
|
| 60 |
temp_image_path = temp_file.name
|
| 61 |
|
| 62 |
-
# Perform image captioning
|
| 63 |
results = captioning_pipeline(temp_image_path)
|
| 64 |
if not results or not isinstance(results, list):
|
| 65 |
-
return "Error:
|
| 66 |
|
| 67 |
-
# Extract and clean up the generated caption
|
| 68 |
caption = results[0].get("generated_text", "").strip()
|
| 69 |
if not caption:
|
| 70 |
-
return "No caption was generated
|
| 71 |
-
|
| 72 |
return caption, False
|
| 73 |
|
| 74 |
except Exception as e:
|
| 75 |
return f"Error analyzing image: {e}", True
|
| 76 |
|
| 77 |
@spaces.GPU(duration=120)
|
| 78 |
-
def get_audioldm_from_caption(caption
|
| 79 |
-
"""
|
| 80 |
-
Generate an audio file (WAV) from a text caption using the AudioLDM2 pipeline.
|
| 81 |
-
|
| 82 |
-
:param caption: The text prompt used to generate audio.
|
| 83 |
-
:return: The path to the generated .wav file, or None if an error occurred.
|
| 84 |
-
"""
|
| 85 |
try:
|
| 86 |
-
|
| 87 |
-
pipe.to(device)
|
| 88 |
-
|
| 89 |
-
# Generate audio from text prompt
|
| 90 |
audio_output = pipe(
|
| 91 |
prompt=caption,
|
| 92 |
num_inference_steps=50,
|
| 93 |
guidance_scale=7.5
|
| 94 |
)
|
| 95 |
-
|
| 96 |
-
# Move pipeline back to CPU to free GPU memory
|
| 97 |
pipe.to("cpu")
|
| 98 |
-
|
| 99 |
-
# Extract the first audio sample
|
| 100 |
audio = audio_output.audios[0]
|
| 101 |
|
| 102 |
-
# Write the audio to a temporary WAV file
|
| 103 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
| 104 |
write(temp_wav.name, 16000, audio)
|
| 105 |
return temp_wav.name
|
|
@@ -108,8 +64,6 @@ def get_audioldm_from_caption(caption: str):
|
|
| 108 |
print(f"Error generating audio from caption: {e}")
|
| 109 |
return None
|
| 110 |
|
| 111 |
-
|
| 112 |
-
# Custom CSS for styling the Gradio Blocks
|
| 113 |
css = """
|
| 114 |
#col-container{
|
| 115 |
margin: 0 auto;
|
|
@@ -120,28 +74,25 @@ css = """
|
|
| 120 |
with gr.Blocks(css=css) as demo:
|
| 121 |
with gr.Column(elem_id="col-container"):
|
| 122 |
gr.HTML("""
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
""")
|
| 128 |
|
| 129 |
gr.Markdown("""
|
| 130 |
-
Welcome to this unique sound effect generator! This tool allows you to upload an image
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
**💡 How it works:**
|
| 135 |
1. **Upload an image**: Choose an image that you'd like to analyze.
|
| 136 |
-
2. **Generate Description**: Click on 'Generate Description' to get a textual
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
'Generate Sound Effect' to create a sound effect that matches the image context.
|
| 140 |
|
| 141 |
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
| 142 |
""")
|
| 143 |
|
| 144 |
-
# Define Gradio interface elements
|
| 145 |
image_upload = gr.File(label="Upload Image", type="binary")
|
| 146 |
generate_description_button = gr.Button("Generate Description")
|
| 147 |
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
|
@@ -162,26 +113,20 @@ with gr.Blocks(css=css) as demo:
|
|
| 162 |
|
| 163 |
gr.Markdown("""
|
| 164 |
## 📢 Stay Connected
|
| 165 |
-
This app is a testament to the creative possibilities that emerge when
|
| 166 |
-
|
| 167 |
""")
|
| 168 |
|
| 169 |
-
# Define the helper functions for Gradio event handlers
|
| 170 |
def update_caption(image_file):
|
| 171 |
-
description,
|
| 172 |
-
if error_flag:
|
| 173 |
-
# In case of error, just return the error message
|
| 174 |
-
return description
|
| 175 |
return description
|
| 176 |
|
| 177 |
def generate_sound(description):
|
| 178 |
-
# Validate the description before generating audio
|
| 179 |
if not description or description.startswith("Error"):
|
| 180 |
return None
|
| 181 |
audio_path = get_audioldm_from_caption(description)
|
| 182 |
return audio_path
|
| 183 |
|
| 184 |
-
# Wire the Gradio events to the functions
|
| 185 |
generate_description_button.click(
|
| 186 |
fn=update_caption,
|
| 187 |
inputs=image_upload,
|
|
@@ -193,16 +138,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 193 |
inputs=caption_display,
|
| 194 |
outputs=audio_output
|
| 195 |
)
|
| 196 |
-
|
| 197 |
-
gr.HTML(
|
| 198 |
-
'<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image">'
|
| 199 |
-
'<img src="https://api.visitorbadge.io/api/visitors?path='
|
| 200 |
-
'https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" '
|
| 201 |
-
'/></a>'
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
# An extra placeholder if needed
|
| 205 |
html = gr.HTML()
|
| 206 |
|
| 207 |
-
|
| 208 |
-
demo.launch(debug=True, share=True)
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import os
|
|
|
|
| 3 |
import tempfile
|
| 4 |
import gradio as gr
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
hf_token = os.getenv("HF_TKN")
|
| 14 |
|
|
|
|
|
|
|
| 15 |
device_id = 0 if torch.cuda.is_available() else -1
|
| 16 |
|
|
|
|
| 17 |
captioning_pipeline = pipeline(
|
| 18 |
"image-to-text",
|
| 19 |
model="nlpconnect/vit-gpt2-image-captioning",
|
| 20 |
device=device_id
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
pipe = DiffusionPipeline.from_pretrained(
|
| 24 |
"cvssp/audioldm2",
|
| 25 |
use_auth_token=hf_token
|
| 26 |
)
|
|
|
|
| 27 |
|
| 28 |
@spaces.GPU(duration=120)
|
| 29 |
+
def analyze_image_with_free_model(image_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
| 32 |
temp_file.write(image_file)
|
| 33 |
temp_image_path = temp_file.name
|
| 34 |
|
|
|
|
| 35 |
results = captioning_pipeline(temp_image_path)
|
| 36 |
if not results or not isinstance(results, list):
|
| 37 |
+
return "Error: Could not generate caption.", True
|
| 38 |
|
|
|
|
| 39 |
caption = results[0].get("generated_text", "").strip()
|
| 40 |
if not caption:
|
| 41 |
+
return "No caption was generated.", True
|
|
|
|
| 42 |
return caption, False
|
| 43 |
|
| 44 |
except Exception as e:
|
| 45 |
return f"Error analyzing image: {e}", True
|
| 46 |
|
| 47 |
@spaces.GPU(duration=120)
|
| 48 |
+
def get_audioldm_from_caption(caption):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
try:
|
| 50 |
+
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
| 51 |
audio_output = pipe(
|
| 52 |
prompt=caption,
|
| 53 |
num_inference_steps=50,
|
| 54 |
guidance_scale=7.5
|
| 55 |
)
|
|
|
|
|
|
|
| 56 |
pipe.to("cpu")
|
|
|
|
|
|
|
| 57 |
audio = audio_output.audios[0]
|
| 58 |
|
|
|
|
| 59 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
| 60 |
write(temp_wav.name, 16000, audio)
|
| 61 |
return temp_wav.name
|
|
|
|
| 64 |
print(f"Error generating audio from caption: {e}")
|
| 65 |
return None
|
| 66 |
|
|
|
|
|
|
|
| 67 |
css = """
|
| 68 |
#col-container{
|
| 69 |
margin: 0 auto;
|
|
|
|
| 74 |
with gr.Blocks(css=css) as demo:
|
| 75 |
with gr.Column(elem_id="col-container"):
|
| 76 |
gr.HTML("""
|
| 77 |
+
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
|
| 78 |
+
<p style="text-align: center;">
|
| 79 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
| 80 |
+
</p>
|
| 81 |
""")
|
| 82 |
|
| 83 |
gr.Markdown("""
|
| 84 |
+
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
| 85 |
+
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
|
| 86 |
+
|
|
|
|
| 87 |
**💡 How it works:**
|
| 88 |
1. **Upload an image**: Choose an image that you'd like to analyze.
|
| 89 |
+
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
| 90 |
+
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
| 91 |
+
sound effect that matches the image context.
|
|
|
|
| 92 |
|
| 93 |
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
| 94 |
""")
|
| 95 |
|
|
|
|
| 96 |
image_upload = gr.File(label="Upload Image", type="binary")
|
| 97 |
generate_description_button = gr.Button("Generate Description")
|
| 98 |
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
|
|
|
| 113 |
|
| 114 |
gr.Markdown("""
|
| 115 |
## 📢 Stay Connected
|
| 116 |
+
This app is a testament to the creative possibilities that emerge when technology meets art.
|
| 117 |
+
Enjoy exploring the auditory landscape of your images!
|
| 118 |
""")
|
| 119 |
|
|
|
|
| 120 |
def update_caption(image_file):
|
| 121 |
+
description, _ = analyze_image_with_free_model(image_file)
|
|
|
|
|
|
|
|
|
|
| 122 |
return description
|
| 123 |
|
| 124 |
def generate_sound(description):
|
|
|
|
| 125 |
if not description or description.startswith("Error"):
|
| 126 |
return None
|
| 127 |
audio_path = get_audioldm_from_caption(description)
|
| 128 |
return audio_path
|
| 129 |
|
|
|
|
| 130 |
generate_description_button.click(
|
| 131 |
fn=update_caption,
|
| 132 |
inputs=image_upload,
|
|
|
|
| 138 |
inputs=caption_display,
|
| 139 |
outputs=audio_output
|
| 140 |
)
|
| 141 |
+
|
| 142 |
+
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
html = gr.HTML()
|
| 144 |
|
| 145 |
+
demo.launch(debug=True, share=True)
|
|
|