Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,169 +10,213 @@ from transformers import pipeline
|
|
| 10 |
from pydub import AudioSegment
|
| 11 |
import numpy as np
|
| 12 |
|
|
|
|
| 13 |
load_dotenv()
|
| 14 |
hf_token = os.getenv("HF_TKN")
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
# Initialize models
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
"cvssp/audioldm2",
|
| 27 |
-
use_auth_token=hf_token
|
| 28 |
-
)
|
| 29 |
|
| 30 |
-
@spaces.GPU(duration=
|
| 31 |
def analyze_image(image_file):
|
|
|
|
| 32 |
try:
|
| 33 |
results = captioning_pipeline(image_file)
|
| 34 |
-
if
|
| 35 |
-
return
|
| 36 |
-
|
| 37 |
-
caption = results[0].get("generated_text", "").strip()
|
| 38 |
-
return caption if caption else "No caption generated.", not bool(caption)
|
| 39 |
except Exception as e:
|
| 40 |
-
return f"Error
|
| 41 |
|
| 42 |
@spaces.GPU(duration=120)
|
| 43 |
def generate_audio(prompt):
|
|
|
|
| 44 |
try:
|
| 45 |
-
pipe
|
| 46 |
-
audio_output = pipe(
|
| 47 |
prompt=prompt,
|
| 48 |
num_inference_steps=50,
|
| 49 |
guidance_scale=7.5
|
| 50 |
-
)
|
| 51 |
-
pipe.to("cpu")
|
| 52 |
-
return audio_output.audios[0]
|
| 53 |
except Exception as e:
|
| 54 |
-
print(f"
|
| 55 |
return None
|
| 56 |
|
| 57 |
def blend_audios(audio_list):
|
|
|
|
| 58 |
try:
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
mixed = np.zeros(max_length)
|
| 64 |
-
|
|
|
|
| 65 |
if arr.shape[0] < max_length:
|
| 66 |
padded = np.pad(arr, (0, max_length - arr.shape[0]))
|
| 67 |
else:
|
| 68 |
padded = arr[:max_length]
|
| 69 |
mixed += padded
|
| 70 |
|
| 71 |
-
# Normalize the audio
|
| 72 |
mixed = mixed / np.max(np.abs(mixed))
|
| 73 |
-
|
| 74 |
-
# Save to temporary file
|
| 75 |
_, tmp_path = tempfile.mkstemp(suffix=".wav")
|
| 76 |
write(tmp_path, 16000, mixed)
|
| 77 |
return tmp_path
|
| 78 |
except Exception as e:
|
| 79 |
-
print(f"
|
| 80 |
return None
|
| 81 |
|
| 82 |
css = """
|
| 83 |
#col-container { max-width: 800px; margin: 0 auto; }
|
| 84 |
.toggle-row { margin: 1rem 0; }
|
| 85 |
.prompt-box { margin-bottom: 0.5rem; }
|
|
|
|
| 86 |
"""
|
| 87 |
|
| 88 |
with gr.Blocks(css=css) as demo:
|
| 89 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 90 |
gr.HTML("""
|
| 91 |
-
<h1 style="text-align: center;">🎶
|
| 92 |
-
<p style="text-align: center;"
|
|
|
|
|
|
|
| 93 |
""")
|
| 94 |
-
|
| 95 |
-
# Input
|
| 96 |
input_mode = gr.Radio(
|
| 97 |
-
choices=["Image Input", "Text
|
| 98 |
value="Image Input",
|
| 99 |
label="Select Input Mode",
|
| 100 |
elem_classes="toggle-row"
|
| 101 |
)
|
| 102 |
-
|
| 103 |
-
# Image
|
| 104 |
with gr.Column(visible=True) as image_col:
|
| 105 |
image_upload = gr.Image(type="filepath", label="Upload Image")
|
| 106 |
-
generate_desc_btn = gr.Button("Generate Description from Image")
|
| 107 |
caption_display = gr.Textbox(label="Generated Description", interactive=False)
|
| 108 |
-
|
| 109 |
-
# Text
|
| 110 |
with gr.Column(visible=False) as text_col:
|
| 111 |
with gr.Row():
|
| 112 |
-
prompt1 = gr.Textbox(label="Sound Prompt 1", lines=2)
|
| 113 |
-
prompt2 = gr.Textbox(label="Sound Prompt 2", lines=2)
|
| 114 |
additional_prompts = gr.Column()
|
| 115 |
add_prompt_btn = gr.Button("➕ Add Another Prompt", variant="secondary")
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
| 122 |
gr.Markdown("""
|
| 123 |
-
##
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
3. For text: Enter multiple sound prompts → Generate Blended Sound
|
| 127 |
-
[Support on Ko-fi](https://ko-fi.com/bilsimaging)
|
| 128 |
""")
|
| 129 |
|
| 130 |
-
# Visitor
|
| 131 |
gr.HTML("""
|
| 132 |
-
<div style="text-align: center;
|
| 133 |
-
<a href="https://visitorbadge.io/status?path=
|
| 134 |
-
<img src="https://api.visitorbadge.io/api/visitors?path=
|
| 135 |
</a>
|
| 136 |
</div>
|
| 137 |
""")
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
def toggle_input(mode):
|
| 141 |
-
if mode == "Image Input":
|
| 142 |
-
return [gr.update(visible=True), gr.update(visible=False)]
|
| 143 |
-
return [gr.update(visible=False), gr.update(visible=True)]
|
| 144 |
-
|
| 145 |
input_mode.change(
|
| 146 |
-
|
| 147 |
inputs=input_mode,
|
| 148 |
-
outputs=[image_col, text_col]
|
|
|
|
| 149 |
)
|
| 150 |
|
| 151 |
-
# Image
|
| 152 |
generate_desc_btn.click(
|
| 153 |
-
|
| 154 |
inputs=image_upload,
|
| 155 |
-
outputs=caption_display
|
| 156 |
-
|
| 157 |
-
fn=lambda: gr.update(interactive=True),
|
| 158 |
-
outputs=generate_sound_btn
|
| 159 |
)
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
if __name__ == "__main__":
|
| 178 |
-
demo.launch()
|
|
|
|
| 10 |
from pydub import AudioSegment
|
| 11 |
import numpy as np
|
| 12 |
|
| 13 |
+
# Load environment variables
|
| 14 |
load_dotenv()
|
| 15 |
hf_token = os.getenv("HF_TKN")
|
| 16 |
|
| 17 |
+
# Device configuration
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 20 |
|
| 21 |
+
# Initialize models with automatic device detection
|
| 22 |
+
@spaces.GPU(duration=120)
|
| 23 |
+
def load_models():
|
| 24 |
+
global captioning_pipeline, pipe
|
| 25 |
+
captioning_pipeline = pipeline(
|
| 26 |
+
"image-to-text",
|
| 27 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
| 28 |
+
device=0 if torch.cuda.is_available() else -1
|
| 29 |
+
)
|
| 30 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 31 |
+
"cvssp/audioldm2",
|
| 32 |
+
use_auth_token=hf_token,
|
| 33 |
+
torch_dtype=torch_dtype
|
| 34 |
+
).to(device)
|
| 35 |
|
| 36 |
+
load_models()
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
@spaces.GPU(duration=60)
|
| 39 |
def analyze_image(image_file):
|
| 40 |
+
"""Generate caption from image with error handling"""
|
| 41 |
try:
|
| 42 |
results = captioning_pipeline(image_file)
|
| 43 |
+
if results and isinstance(results, list):
|
| 44 |
+
return results[0].get("generated_text", "").strip()
|
| 45 |
+
return "Could not generate caption"
|
|
|
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
+
return f"Error: {str(e)}"
|
| 48 |
|
| 49 |
@spaces.GPU(duration=120)
|
| 50 |
def generate_audio(prompt):
|
| 51 |
+
"""Generate audio from text prompt"""
|
| 52 |
try:
|
| 53 |
+
return pipe(
|
|
|
|
| 54 |
prompt=prompt,
|
| 55 |
num_inference_steps=50,
|
| 56 |
guidance_scale=7.5
|
| 57 |
+
).audios[0]
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
+
print(f"Audio generation error: {str(e)}")
|
| 60 |
return None
|
| 61 |
|
| 62 |
def blend_audios(audio_list):
|
| 63 |
+
"""Mix multiple audio arrays into one"""
|
| 64 |
try:
|
| 65 |
+
valid_audios = [arr for arr in audio_list if arr is not None]
|
| 66 |
+
if not valid_audios:
|
| 67 |
+
return None
|
| 68 |
+
|
| 69 |
+
max_length = max(arr.shape[0] for arr in valid_audios)
|
| 70 |
mixed = np.zeros(max_length)
|
| 71 |
+
|
| 72 |
+
for arr in valid_audios:
|
| 73 |
if arr.shape[0] < max_length:
|
| 74 |
padded = np.pad(arr, (0, max_length - arr.shape[0]))
|
| 75 |
else:
|
| 76 |
padded = arr[:max_length]
|
| 77 |
mixed += padded
|
| 78 |
|
|
|
|
| 79 |
mixed = mixed / np.max(np.abs(mixed))
|
|
|
|
|
|
|
| 80 |
_, tmp_path = tempfile.mkstemp(suffix=".wav")
|
| 81 |
write(tmp_path, 16000, mixed)
|
| 82 |
return tmp_path
|
| 83 |
except Exception as e:
|
| 84 |
+
print(f"Blending error: {str(e)}")
|
| 85 |
return None
|
| 86 |
|
| 87 |
css = """
|
| 88 |
#col-container { max-width: 800px; margin: 0 auto; }
|
| 89 |
.toggle-row { margin: 1rem 0; }
|
| 90 |
.prompt-box { margin-bottom: 0.5rem; }
|
| 91 |
+
.danger { color: #ff4444; font-weight: bold; }
|
| 92 |
"""
|
| 93 |
|
| 94 |
with gr.Blocks(css=css) as demo:
|
| 95 |
with gr.Column(elem_id="col-container"):
|
| 96 |
+
# Header Section
|
| 97 |
gr.HTML("""
|
| 98 |
+
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image or Text</h1>
|
| 99 |
+
<p style="text-align: center;">
|
| 100 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
| 101 |
+
</p>
|
| 102 |
""")
|
| 103 |
+
|
| 104 |
+
# Input Mode Toggle
|
| 105 |
input_mode = gr.Radio(
|
| 106 |
+
choices=["Image Input", "Text Input"],
|
| 107 |
value="Image Input",
|
| 108 |
label="Select Input Mode",
|
| 109 |
elem_classes="toggle-row"
|
| 110 |
)
|
| 111 |
+
|
| 112 |
+
# Image Input Section
|
| 113 |
with gr.Column(visible=True) as image_col:
|
| 114 |
image_upload = gr.Image(type="filepath", label="Upload Image")
|
| 115 |
+
generate_desc_btn = gr.Button("Generate Description from Image", variant="primary")
|
| 116 |
caption_display = gr.Textbox(label="Generated Description", interactive=False)
|
| 117 |
+
|
| 118 |
+
# Text Input Section
|
| 119 |
with gr.Column(visible=False) as text_col:
|
| 120 |
with gr.Row():
|
| 121 |
+
prompt1 = gr.Textbox(label="Sound Prompt 1", lines=2, placeholder="Enter sound description...")
|
| 122 |
+
prompt2 = gr.Textbox(label="Sound Prompt 2", lines=2, placeholder="Enter sound description...")
|
| 123 |
additional_prompts = gr.Column()
|
| 124 |
add_prompt_btn = gr.Button("➕ Add Another Prompt", variant="secondary")
|
| 125 |
+
gr.Markdown("<div class='danger'>Max 5 prompts for stability</div>")
|
| 126 |
+
|
| 127 |
+
# Generation Controls
|
| 128 |
+
generate_sound_btn = gr.Button("Generate Sound Effect", variant="primary")
|
| 129 |
+
audio_output = gr.Audio(label="Generated Sound Effect", interactive=False)
|
| 130 |
+
|
| 131 |
+
# Documentation Section
|
| 132 |
gr.Markdown("""
|
| 133 |
+
## 👥 How You Can Contribute
|
| 134 |
+
We welcome contributions! Contact us at [contact@bilsimaging.com](mailto:contact@bilsimaging.com).
|
| 135 |
+
Support us on [Ko-fi](https://ko-fi.com/bilsimaging) - Bilel Aroua
|
|
|
|
|
|
|
| 136 |
""")
|
| 137 |
|
| 138 |
+
# Visitor Badge
|
| 139 |
gr.HTML("""
|
| 140 |
+
<div style="text-align: center;">
|
| 141 |
+
<a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image">
|
| 142 |
+
<img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image&countColor=%23263759"/>
|
| 143 |
</a>
|
| 144 |
</div>
|
| 145 |
""")
|
| 146 |
|
| 147 |
+
# Input Mode Toggle Handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
input_mode.change(
|
| 149 |
+
lambda mode: (gr.update(visible=mode == "Image Input"), gr.update(visible=mode == "Text Input")),
|
| 150 |
inputs=input_mode,
|
| 151 |
+
outputs=[image_col, text_col],
|
| 152 |
+
concurrency_limit=1
|
| 153 |
)
|
| 154 |
|
| 155 |
+
# Image Description Generation
|
| 156 |
generate_desc_btn.click(
|
| 157 |
+
analyze_image,
|
| 158 |
inputs=image_upload,
|
| 159 |
+
outputs=caption_display,
|
| 160 |
+
concurrency_limit=2
|
|
|
|
|
|
|
| 161 |
)
|
| 162 |
|
| 163 |
+
# Dynamic Prompt Addition
|
| 164 |
+
def add_prompt(current_count):
|
| 165 |
+
if current_count >= 5:
|
| 166 |
+
return current_count, gr.update()
|
| 167 |
+
new_count = current_count + 1
|
| 168 |
+
new_prompt = gr.Textbox(
|
| 169 |
+
label=f"Sound Prompt {new_count}",
|
| 170 |
+
lines=2,
|
| 171 |
+
visible=True,
|
| 172 |
+
placeholder="Enter sound description..."
|
| 173 |
+
)
|
| 174 |
+
return new_count, new_prompt
|
| 175 |
+
|
| 176 |
+
prompt_count = gr.State(2)
|
| 177 |
+
add_prompt_btn.click(
|
| 178 |
+
add_prompt,
|
| 179 |
+
inputs=prompt_count,
|
| 180 |
+
outputs=[prompt_count, additional_prompts],
|
| 181 |
+
concurrency_limit=1
|
| 182 |
)
|
| 183 |
|
| 184 |
+
# Sound Generation Handler
|
| 185 |
+
def process_inputs(mode, image_file, caption, *prompts):
|
| 186 |
+
try:
|
| 187 |
+
if mode == "Image Input":
|
| 188 |
+
if not image_file:
|
| 189 |
+
raise gr.Error("Please upload an image")
|
| 190 |
+
caption = analyze_image(image_file)
|
| 191 |
+
prompts = [caption]
|
| 192 |
+
else:
|
| 193 |
+
prompts = [p.strip() for p in prompts if p.strip()]
|
| 194 |
+
if not prompts:
|
| 195 |
+
raise gr.Error("Please enter at least one valid prompt")
|
| 196 |
+
|
| 197 |
+
# Generate individual audio tracks
|
| 198 |
+
audio_tracks = []
|
| 199 |
+
for prompt in prompts:
|
| 200 |
+
if not prompt:
|
| 201 |
+
continue
|
| 202 |
+
audio = generate_audio(prompt)
|
| 203 |
+
if audio is not None:
|
| 204 |
+
audio_tracks.append(audio)
|
| 205 |
+
|
| 206 |
+
# Blend audio tracks
|
| 207 |
+
if not audio_tracks:
|
| 208 |
+
return None
|
| 209 |
+
return blend_audios(audio_tracks)
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise gr.Error(f"Processing error: {str(e)}")
|
| 213 |
+
|
| 214 |
+
generate_sound_btn.click(
|
| 215 |
+
process_inputs,
|
| 216 |
+
inputs=[input_mode, image_upload, caption_display, prompt1, prompt2],
|
| 217 |
+
outputs=audio_output,
|
| 218 |
+
concurrency_limit=2
|
| 219 |
+
)
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
| 222 |
+
demo.launch(max_threads=4)
|