LiamKhoaLe commited on
Commit
830acbf
·
1 Parent(s): 331c413

Upd summariser

Browse files
memory/memory.py CHANGED
@@ -7,7 +7,7 @@ import faiss
7
  from sentence_transformers import SentenceTransformer
8
  from google import genai # must be configured in app.py and imported globally
9
  import logging
10
- from models.summarizer import get_summarizer
11
 
12
  _LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
13
  # Load embedding model
 
7
  from sentence_transformers import SentenceTransformer
8
  from google import genai # must be configured in app.py and imported globally
9
  import logging
10
+ from models.summarizer import summarizer
11
 
12
  _LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
13
  # Load embedding model
models/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (351 Bytes). View file
 
models/__pycache__/llama.cpython-311.pyc ADDED
Binary file (6.73 kB). View file
 
models/__pycache__/summarizer.cpython-311.pyc ADDED
Binary file (10.5 kB). View file
 
models/summarizer.py CHANGED
@@ -39,21 +39,21 @@ class TextSummarizer:
39
  return text.strip()
40
 
41
  def extract_key_phrases(self, text: str) -> List[str]:
42
- """Extract key medical phrases and terms"""
43
  if not text:
44
  return []
45
 
46
- # Medical term patterns
47
- medical_patterns = [
48
- r'\b(?:symptoms?|diagnosis|treatment|therapy|medication|drug|disease|condition|syndrome)\b',
49
- r'\b(?:patient|doctor|physician|medical|clinical|healthcare)\b',
50
- r'\b(?:blood pressure|heart rate|temperature|pulse|respiration)\b',
51
- r'\b(?:acute|chronic|severe|mild|moderate|serious|critical)\b',
52
- r'\b(?:pain|ache|discomfort|swelling|inflammation|infection)\b'
53
  ]
54
 
55
  key_phrases = []
56
- for pattern in medical_patterns:
57
  matches = re.findall(pattern, text, re.IGNORECASE)
58
  key_phrases.extend(matches)
59
 
@@ -70,10 +70,10 @@ class TextSummarizer:
70
 
71
  # Extract key phrases for context
72
  key_phrases = self.extract_key_phrases(cleaned_text)
73
- key_phrases_str = ", ".join(key_phrases[:5]) if key_phrases else "medical information"
74
 
75
  # Create optimized prompt
76
- prompt = f"""Summarize this medical text in {max_length} characters or less. Focus only on key medical facts, symptoms, treatments, and diagnoses. Do not include greetings, confirmations, or conversational elements.
77
 
78
  Key terms: {key_phrases_str}
79
 
@@ -110,7 +110,7 @@ Summary:"""
110
 
111
  # Short, strict prompt to avoid verbosity; instruct to output NOTHING if irrelevant
112
  prompt = (
113
- f"You extract only medically relevant facts that help answer: '{query}'. "
114
  f"Respond with a concise bullet list (<= {max_length} chars total). "
115
  "If the content is irrelevant, respond with EXACTLY: NONE.\n\n"
116
  f"Content: {cleaned_text[:1600]}\n\nRelevant facts:"
@@ -138,12 +138,12 @@ Summary:"""
138
  url_mapping[doc_id] = doc['url']
139
 
140
  # Create focused summary for each document
141
- summary_prompt = f"""Summarize this medical document in 2-3 sentences, focusing on information relevant to: "{user_query}"
142
 
143
  Document: {doc['title']}
144
  Content: {doc['content'][:800]}
145
 
146
- Key medical information:"""
147
 
148
  summary = self.llama_client._call_llama(summary_prompt)
149
  summary = self.clean_text(summary)
@@ -165,11 +165,11 @@ Key medical information:"""
165
 
166
  cleaned_chunk = self.clean_text(chunk)
167
 
168
- prompt = f"""Summarize this medical conversation in 1-2 sentences. Focus only on medical facts, symptoms, treatments, or diagnoses discussed. Remove greetings and conversational elements.
169
 
170
  Conversation: {cleaned_chunk[:1000]}
171
 
172
- Medical summary:"""
173
 
174
  summary = self.llama_client._call_llama(prompt)
175
  return self.clean_text(summary)
 
39
  return text.strip()
40
 
41
  def extract_key_phrases(self, text: str) -> List[str]:
42
+ """Extract key cooking phrases and terms"""
43
  if not text:
44
  return []
45
 
46
+ # Cooking term patterns
47
+ cooking_patterns = [
48
+ r'\b(?:recipe|ingredients?|cooking|baking|roasting|grilling|frying|boiling|steaming)\b',
49
+ r'\b(?:chef|cook|kitchen|cuisine|meal|dish|food|taste|flavor)\b',
50
+ r'\b(?:temperature|timing|preparation|technique|method|seasoning|spices?|herbs?)\b',
51
+ r'\b(?:oven|stovetop|grill|pan|pot|skillet|knife|cutting|chopping)\b',
52
+ r'\b(?:sauce|marinade|dressing|garnish|presentation|serving)\b'
53
  ]
54
 
55
  key_phrases = []
56
+ for pattern in cooking_patterns:
57
  matches = re.findall(pattern, text, re.IGNORECASE)
58
  key_phrases.extend(matches)
59
 
 
70
 
71
  # Extract key phrases for context
72
  key_phrases = self.extract_key_phrases(cleaned_text)
73
+ key_phrases_str = ", ".join(key_phrases[:5]) if key_phrases else "cooking information"
74
 
75
  # Create optimized prompt
76
+ prompt = f"""Summarize this cooking text in {max_length} characters or less. Focus only on key cooking facts, recipes, techniques, and ingredients. Do not include greetings, confirmations, or conversational elements.
77
 
78
  Key terms: {key_phrases_str}
79
 
 
110
 
111
  # Short, strict prompt to avoid verbosity; instruct to output NOTHING if irrelevant
112
  prompt = (
113
+ f"You extract only cooking relevant facts that help answer: '{query}'. "
114
  f"Respond with a concise bullet list (<= {max_length} chars total). "
115
  "If the content is irrelevant, respond with EXACTLY: NONE.\n\n"
116
  f"Content: {cleaned_text[:1600]}\n\nRelevant facts:"
 
138
  url_mapping[doc_id] = doc['url']
139
 
140
  # Create focused summary for each document
141
+ summary_prompt = f"""Summarize this cooking document in 2-3 sentences, focusing on information relevant to: "{user_query}"
142
 
143
  Document: {doc['title']}
144
  Content: {doc['content'][:800]}
145
 
146
+ Key cooking information:"""
147
 
148
  summary = self.llama_client._call_llama(summary_prompt)
149
  summary = self.clean_text(summary)
 
165
 
166
  cleaned_chunk = self.clean_text(chunk)
167
 
168
+ prompt = f"""Summarize this cooking conversation in 1-2 sentences. Focus only on cooking facts, recipes, techniques, or ingredients discussed. Remove greetings and conversational elements.
169
 
170
  Conversation: {cleaned_chunk[:1000]}
171
 
172
+ Cooking summary:"""
173
 
174
  summary = self.llama_client._call_llama(prompt)
175
  return self.clean_text(summary)
utils/symbipredict_2022.csv DELETED
The diff for this file is too large to render. See raw diff
 
utils/vlm.py DELETED
@@ -1,54 +0,0 @@
1
- import os, logging, traceback, json, base64
2
- from io import BytesIO
3
- from PIL import Image
4
- from .translation import translate_query
5
- from gradio_client import Client, handle_file
6
- import tempfile
7
-
8
- logger = logging.getLogger("vlm-agent")
9
- logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True)
10
-
11
- # ✅ Load Gradio client once
12
- gr_client = None
13
- def load_gradio_client():
14
- global gr_client
15
- if gr_client is None:
16
- logger.info("[VLM] ⏳ Connecting to MedGEMMA Gradio Space...")
17
- gr_client = Client("warshanks/medgemma-4b-it")
18
- logger.info("[VLM] Gradio MedGEMMA client ready.")
19
- return gr_client
20
-
21
- def process_medical_image(base64_image: str, prompt: str = None, lang: str = "EN") -> str:
22
- if not prompt:
23
- prompt = "Describe and investigate any clinical findings from this medical image."
24
- elif lang.upper() in {"VI", "ZH"}:
25
- prompt = translate_query(prompt, lang.lower())
26
-
27
- try:
28
- # 1️⃣ Decode base64 image to temp file
29
- image_data = base64.b64decode(base64_image)
30
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
31
- tmp.write(image_data)
32
- tmp.flush()
33
- image_path = tmp.name
34
-
35
- # 2️⃣ Send to Gradio MedGEMMA
36
- client = load_gradio_client()
37
- logger.info(f"[VLM] Sending prompt: {prompt}")
38
- result = client.predict(
39
- message={"text": prompt, "files": [handle_file(image_path)]},
40
- param_2 = "You analyze medical images and report abnormalities, diseases with clear diagnostic insight.",
41
- param_3=2048,
42
- api_name="/chat"
43
- )
44
- if isinstance(result, str):
45
- logger.info(f"[VLM] ✅ Response: {result}")
46
- return result.strip()
47
- else:
48
- logger.warning(f"[VLM] ⚠️ Unexpected result type: {type(result)} — {result}")
49
- return str(result)
50
-
51
- except Exception as e:
52
- logger.error(f"[VLM] ❌ Exception: {e}")
53
- logger.error(f"[VLM] 🔍 Traceback:\n{traceback.format_exc()}")
54
- return f"[VLM] ⚠️ Failed to process image: {e}"