Spaces:
Sleeping
Sleeping
File size: 56,821 Bytes
46db43c 140713c 46db43c 140713c 46db43c 140713c 46db43c 38d86a7 7a1ebee 46db43c 49f77e8 46db43c de8bd26 46db43c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
# https://binkhoale1812-edsummariser.hf.space/
import os, io, re, uuid, json, time, logging
from typing import List, Dict, Any, Optional
from datetime import datetime, timezone
from pydantic import BaseModel
import asyncio
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
# MongoDB imports
from pymongo.errors import PyMongoError, ConnectionFailure, ServerSelectionTimeoutError
from utils.api.rotator import APIKeyRotator
from utils.ingestion.parser import parse_pdf_bytes, parse_docx_bytes
from utils.ingestion.caption import BlipCaptioner
from utils.ingestion.chunker import build_cards_from_pages
from utils.rag.embeddings import EmbeddingClient
from utils.rag.rag import RAGStore, ensure_indexes
from utils.api.router import select_model, generate_answer_with_model
from utils.service.summarizer import cheap_summarize
from utils.service.common import trim_text
from utils.logger import get_logger
import re
# ────────────────────────────── Response Models ──────────────────────────────
class ProjectResponse(BaseModel):
project_id: str
user_id: str
name: str
description: str
created_at: str
updated_at: str
class ProjectsListResponse(BaseModel):
projects: List[ProjectResponse]
class ChatMessageResponse(BaseModel):
user_id: str
project_id: str
role: str
content: str
timestamp: float
created_at: str
sources: Optional[List[Dict[str, Any]]] = None
class ChatHistoryResponse(BaseModel):
messages: List[ChatMessageResponse]
class MessageResponse(BaseModel):
message: str
class UploadResponse(BaseModel):
job_id: str
status: str
total_files: Optional[int] = None
class FileSummaryResponse(BaseModel):
filename: str
summary: str
class ChatAnswerResponse(BaseModel):
answer: str
sources: List[Dict[str, Any]]
relevant_files: Optional[List[str]] = None
class HealthResponse(BaseModel):
ok: bool
class ReportResponse(BaseModel):
filename: str
report_markdown: str
sources: List[Dict[str, Any]]
# ────────────────────────────── App Setup ──────────────────────────────
logger = get_logger("APP", name="studybuddy")
app = FastAPI(title="StudyBuddy RAG", version="0.1.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve static files (index.html, scripts.js, styles.css)
app.mount("/static", StaticFiles(directory="static"), name="static")
# In-memory job tracker (for progress queries)
app.state.jobs = {}
# ────────────────────────────── Global Clients ──────────────────────────────
# API rotators (round robin + auto failover on quota errors)
gemini_rotator = APIKeyRotator(prefix="GEMINI_API_", max_slots=5)
nvidia_rotator = APIKeyRotator(prefix="NVIDIA_API_", max_slots=5)
# Captioner + Embeddings (lazy init inside classes)
captioner = BlipCaptioner()
embedder = EmbeddingClient(model_name=os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2"))
# Mongo / RAG store
try:
rag = RAGStore(mongo_uri=os.getenv("MONGO_URI"), db_name=os.getenv("MONGO_DB", "studybuddy"))
# Test the connection
rag.client.admin.command('ping')
logger.info("[APP] MongoDB connection successful")
ensure_indexes(rag)
logger.info("[APP] MongoDB indexes ensured")
except Exception as e:
logger.error(f"[APP] Failed to initialize MongoDB/RAG store: {str(e)}")
logger.error(f"[APP] MONGO_URI: {os.getenv('MONGO_URI', 'Not set')}")
logger.error(f"[APP] MONGO_DB: {os.getenv('MONGO_DB', 'studybuddy')}")
# Create a dummy RAG store for now - this will cause errors but prevents the app from crashing
rag = None
# ────────────────────────────── Auth Helpers/Routes ───────────────────────────
import hashlib
import secrets
def _hash_password(password: str, salt: Optional[str] = None) -> Dict[str, str]:
salt = salt or secrets.token_hex(16)
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
return {"salt": salt, "hash": dk.hex()}
def _verify_password(password: str, salt: str, expected_hex: str) -> bool:
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
return secrets.compare_digest(dk.hex(), expected_hex)
@app.post("/auth/signup")
async def signup(email: str = Form(...), password: str = Form(...)):
email = email.strip().lower()
if not email or not password or "@" not in email:
raise HTTPException(400, detail="Invalid email or password")
users = rag.db["users"]
if users.find_one({"email": email}):
raise HTTPException(409, detail="Email already registered")
user_id = str(uuid.uuid4())
hp = _hash_password(password)
users.insert_one({
"email": email,
"user_id": user_id,
"pw_salt": hp["salt"],
"pw_hash": hp["hash"],
"created_at": int(time.time())
})
logger.info(f"[AUTH] Created user {email} -> {user_id}")
return {"email": email, "user_id": user_id}
@app.post("/auth/login")
async def login(email: str = Form(...), password: str = Form(...)):
email = email.strip().lower()
users = rag.db["users"]
doc = users.find_one({"email": email})
if not doc:
raise HTTPException(401, detail="Invalid credentials")
if not _verify_password(password, doc.get("pw_salt", ""), doc.get("pw_hash", "")):
raise HTTPException(401, detail="Invalid credentials")
logger.info(f"[AUTH] Login {email}")
return {"email": email, "user_id": doc.get("user_id")}
# ────────────────────────────── Project Management ───────────────────────────
@app.post("/projects/create", response_model=ProjectResponse)
async def create_project(user_id: str = Form(...), name: str = Form(...), description: str = Form("")):
"""Create a new project for a user"""
try:
if not rag:
raise HTTPException(500, detail="Database connection not available")
if not name.strip():
raise HTTPException(400, detail="Project name is required")
if not user_id.strip():
raise HTTPException(400, detail="User ID is required")
project_id = str(uuid.uuid4())
current_time = datetime.now(timezone.utc)
project = {
"project_id": project_id,
"user_id": user_id,
"name": name.strip(),
"description": description.strip(),
"created_at": current_time,
"updated_at": current_time
}
logger.info(f"[PROJECT] Creating project {name} for user {user_id}")
# Insert the project
try:
result = rag.db["projects"].insert_one(project)
logger.info(f"[PROJECT] Created project {name} with ID {project_id}, MongoDB result: {result.inserted_id}")
except PyMongoError as mongo_error:
logger.error(f"[PROJECT] MongoDB error creating project: {str(mongo_error)}")
raise HTTPException(500, detail=f"Database error: {str(mongo_error)}")
except Exception as db_error:
logger.error(f"[PROJECT] Database error creating project: {str(db_error)}")
raise HTTPException(500, detail=f"Database error: {str(db_error)}")
# Return a properly formatted response
response = ProjectResponse(
project_id=project_id,
user_id=user_id,
name=name.strip(),
description=description.strip(),
created_at=current_time.isoformat(),
updated_at=current_time.isoformat()
)
logger.info(f"[PROJECT] Successfully created project {name} for user {user_id}")
return response
except HTTPException:
# Re-raise HTTP exceptions
raise
except Exception as e:
logger.error(f"[PROJECT] Error creating project: {str(e)}")
logger.error(f"[PROJECT] Error type: {type(e)}")
logger.error(f"[PROJECT] Error details: {e}")
raise HTTPException(500, detail=f"Failed to create project: {str(e)}")
@app.get("/projects", response_model=ProjectsListResponse)
async def list_projects(user_id: str):
"""List all projects for a user"""
projects_cursor = rag.db["projects"].find(
{"user_id": user_id}
).sort("updated_at", -1)
projects = []
for project in projects_cursor:
projects.append(ProjectResponse(
project_id=project["project_id"],
user_id=project["user_id"],
name=project["name"],
description=project.get("description", ""),
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
))
return ProjectsListResponse(projects=projects)
@app.get("/projects/{project_id}", response_model=ProjectResponse)
async def get_project(project_id: str, user_id: str):
"""Get a specific project (with user ownership check)"""
project = rag.db["projects"].find_one(
{"project_id": project_id, "user_id": user_id}
)
if not project:
raise HTTPException(404, detail="Project not found")
return ProjectResponse(
project_id=project["project_id"],
user_id=project["user_id"],
name=project["name"],
description=project.get("description", ""),
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
)
@app.delete("/projects/{project_id}", response_model=MessageResponse)
async def delete_project(project_id: str, user_id: str):
"""Delete a project and all its associated data"""
# Check ownership
project = rag.db["projects"].find_one({"project_id": project_id, "user_id": user_id})
if not project:
raise HTTPException(404, detail="Project not found")
# Delete project and all associated data
rag.db["projects"].delete_one({"project_id": project_id})
rag.db["chunks"].delete_many({"project_id": project_id})
rag.db["files"].delete_many({"project_id": project_id})
rag.db["chat_sessions"].delete_many({"project_id": project_id})
logger.info(f"[PROJECT] Deleted project {project_id} for user {user_id}")
return MessageResponse(message="Project deleted successfully")
# ────────────────────────────── Chat Sessions ──────────────────────────────
@app.post("/chat/save", response_model=MessageResponse)
async def save_chat_message(
user_id: str = Form(...),
project_id: str = Form(...),
role: str = Form(...),
content: str = Form(...),
timestamp: Optional[float] = Form(None),
sources: Optional[str] = Form(None)
):
"""Save a chat message to the session"""
if role not in ["user", "assistant"]:
raise HTTPException(400, detail="Invalid role")
# Parse optional sources JSON
parsed_sources: Optional[List[Dict[str, Any]]] = None
if sources:
try:
parsed = json.loads(sources)
if isinstance(parsed, list):
parsed_sources = parsed
except Exception:
parsed_sources = None
message = {
"user_id": user_id,
"project_id": project_id,
"role": role,
"content": content,
"timestamp": timestamp or time.time(),
"created_at": datetime.now(timezone.utc),
**({"sources": parsed_sources} if parsed_sources is not None else {})
}
rag.db["chat_sessions"].insert_one(message)
return MessageResponse(message="Chat message saved")
@app.get("/chat/history", response_model=ChatHistoryResponse)
async def get_chat_history(user_id: str, project_id: str, limit: int = 100):
"""Get chat history for a project"""
messages_cursor = rag.db["chat_sessions"].find(
{"user_id": user_id, "project_id": project_id}
).sort("timestamp", 1).limit(limit)
messages = []
for message in messages_cursor:
messages.append(ChatMessageResponse(
user_id=message["user_id"],
project_id=message["project_id"],
role=message["role"],
content=message["content"],
timestamp=message["timestamp"],
created_at=message["created_at"].isoformat() if isinstance(message["created_at"], datetime) else str(message["created_at"]),
sources=message.get("sources")
))
return ChatHistoryResponse(messages=messages)
@app.delete("/chat/history", response_model=MessageResponse)
async def delete_chat_history(user_id: str, project_id: str):
try:
rag.db["chat_sessions"].delete_many({"user_id": user_id, "project_id": project_id})
logger.info(f"[CHAT] Cleared history for user {user_id} project {project_id}")
# Also clear in-memory LRU for this user to avoid stale context
try:
from memo.core import get_memory_system
memory = get_memory_system()
memory.clear(user_id)
logger.info(f"[CHAT] Cleared memory for user {user_id}")
except Exception as me:
logger.warning(f"[CHAT] Failed to clear memory for user {user_id}: {me}")
return MessageResponse(message="Chat history cleared")
except Exception as e:
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
# ────────────────────────────── Helpers ──────────────────────────────
def _infer_mime(filename: str) -> str:
lower = filename.lower()
if lower.endswith(".pdf"):
return "application/pdf"
if lower.endswith(".docx"):
return "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
return "application/octet-stream"
def _extract_pages(filename: str, file_bytes: bytes) -> List[Dict[str, Any]]:
mime = _infer_mime(filename)
if mime == "application/pdf":
return parse_pdf_bytes(file_bytes)
elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return parse_docx_bytes(file_bytes)
else:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {filename}")
# ────────────────────────────── Routes ──────────────────────────────
@app.get("/", response_class=HTMLResponse)
def index():
index_path = os.path.join("static", "index.html")
if not os.path.exists(index_path):
return HTMLResponse("<h1>StudyBuddy</h1><p>Static files not found.</p>")
return FileResponse(index_path)
@app.post("/upload", response_model=UploadResponse)
async def upload_files(
request: Request,
background_tasks: BackgroundTasks,
user_id: str = Form(...),
project_id: str = Form(...),
files: List[UploadFile] = File(...),
replace_filenames: Optional[str] = Form(None), # JSON array of filenames to replace
rename_map: Optional[str] = Form(None), # JSON object {original: newname}
):
"""
Ingest many files: PDF/DOCX.
Steps:
1) Extract text & images
2) Caption images (BLIP base, CPU ok)
3) Merge captions into page text
4) Chunk into semantic cards (topic_name, summary, content + metadata)
5) Embed with all-MiniLM-L6-v2
6) Store in MongoDB with per-user and per-project metadata
7) Create a file-level summary
"""
job_id = str(uuid.uuid4())
# Basic upload policy limits
max_files = int(os.getenv("MAX_FILES_PER_UPLOAD", "15"))
max_mb = int(os.getenv("MAX_FILE_MB", "50"))
if len(files) > max_files:
raise HTTPException(400, detail=f"Too many files. Max {max_files} allowed per upload.")
# Parse replace/rename directives
replace_set = set()
try:
if replace_filenames:
replace_set = set(json.loads(replace_filenames))
except Exception:
pass
rename_dict: Dict[str, str] = {}
try:
if rename_map:
rename_dict = json.loads(rename_map)
except Exception:
pass
preloaded_files = []
for uf in files:
raw = await uf.read()
if len(raw) > max_mb * 1024 * 1024:
raise HTTPException(400, detail=f"{uf.filename} exceeds {max_mb} MB limit")
# Apply rename if present
eff_name = rename_dict.get(uf.filename, uf.filename)
preloaded_files.append((eff_name, raw))
# Initialize job status
app.state.jobs[job_id] = {
"created_at": time.time(),
"total": len(preloaded_files),
"completed": 0,
"status": "processing",
"last_error": None,
}
# Single background task: process files sequentially with isolation
async def _process_all():
for idx, (fname, raw) in enumerate(preloaded_files, start=1):
try:
# If instructed to replace this filename, remove previous data first
if fname in replace_set:
try:
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
logger.info(f"[{job_id}] Replaced prior data for {fname}")
except Exception as de:
logger.warning(f"[{job_id}] Replace delete failed for {fname}: {de}")
logger.info(f"[{job_id}] ({idx}/{len(preloaded_files)}) Parsing {fname} ({len(raw)} bytes)")
# Extract pages from file
pages = _extract_pages(fname, raw)
# Caption images per page (if any)
num_imgs = sum(len(p.get("images", [])) for p in pages)
captions = []
if num_imgs > 0:
for p in pages:
caps = []
for im in p.get("images", []):
try:
cap = captioner.caption_image(im)
caps.append(cap)
except Exception as e:
logger.warning(f"[{job_id}] Caption error in {fname}: {e}")
captions.append(caps)
else:
captions = [[] for _ in pages]
# Merge captions into text
for p, caps in zip(pages, captions):
if caps:
p["text"] = (p.get("text", "") + "\n\n" + "\n".join([f"[Image] {c}" for c in caps])).strip()
# Build cards
cards = await build_cards_from_pages(pages, filename=fname, user_id=user_id, project_id=project_id)
logger.info(f"[{job_id}] Built {len(cards)} cards for {fname}")
# Embed & store
embeddings = embedder.embed([c["content"] for c in cards])
for c, vec in zip(cards, embeddings):
c["embedding"] = vec
rag.store_cards(cards)
# File-level summary (cheap extractive)
full_text = "\n\n".join(p.get("text", "") for p in pages)
file_summary = await cheap_summarize(full_text, max_sentences=6)
rag.upsert_file_summary(user_id=user_id, project_id=project_id, filename=fname, summary=file_summary)
logger.info(f"[{job_id}] Completed {fname}")
# Update job progress
job = app.state.jobs.get(job_id)
if job:
job["completed"] = idx
job["status"] = "processing" if idx < job.get("total", 0) else "completed"
except Exception as e:
logger.error(f"[{job_id}] Failed processing {fname}: {e}")
job = app.state.jobs.get(job_id)
if job:
job["last_error"] = str(e)
job["completed"] = idx # count as completed attempt
finally:
# Yield control between files to keep loop responsive
await asyncio.sleep(0)
logger.info(f"[{job_id}] Ingestion complete for {len(preloaded_files)} files")
# Finalize job status
job = app.state.jobs.get(job_id)
if job:
job["status"] = "completed"
background_tasks.add_task(_process_all)
return UploadResponse(job_id=job_id, status="processing", total_files=len(preloaded_files))
@app.get("/upload/status")
async def upload_status(job_id: str):
job = app.state.jobs.get(job_id)
if not job:
raise HTTPException(404, detail="Job not found")
percent = 0
if job.get("total"):
percent = int(round((job.get("completed", 0) / job.get("total", 1)) * 100))
return {
"job_id": job_id,
"status": job.get("status"),
"completed": job.get("completed"),
"total": job.get("total"),
"percent": percent,
"last_error": job.get("last_error"),
"created_at": job.get("created_at"),
}
@app.get("/files")
async def list_project_files(user_id: str, project_id: str):
"""Return stored filenames and summaries for a project."""
files = rag.list_files(user_id=user_id, project_id=project_id)
# Ensure filenames list
filenames = [f.get("filename") for f in files if f.get("filename")]
return {"files": files, "filenames": filenames}
@app.delete("/files", response_model=MessageResponse)
async def delete_file(user_id: str, project_id: str, filename: str):
"""Delete a file summary and associated chunks for a project."""
try:
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
logger.info(f"[FILES] Deleted file {filename} for user {user_id} project {project_id}")
return MessageResponse(message="File deleted")
except Exception as e:
raise HTTPException(500, detail=f"Failed to delete file: {str(e)}")
@app.get("/cards")
def list_cards(user_id: str, project_id: str, filename: Optional[str] = None, limit: int = 50, skip: int = 0):
"""List cards for a project"""
cards = rag.list_cards(user_id=user_id, project_id=project_id, filename=filename, limit=limit, skip=skip)
# Ensure all cards are JSON serializable
serializable_cards = []
for card in cards:
serializable_card = {}
for key, value in card.items():
if key == '_id':
serializable_card[key] = str(value) # Convert ObjectId to string
elif isinstance(value, datetime):
serializable_card[key] = value.isoformat() # Convert datetime to ISO string
else:
serializable_card[key] = value
serializable_cards.append(serializable_card)
# Sort cards by topic_name
return {"cards": serializable_cards}
@app.get("/file-summary", response_model=FileSummaryResponse)
def get_file_summary(user_id: str, project_id: str, filename: str):
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=filename)
if not doc:
raise HTTPException(404, detail="No summary found for that file.")
return FileSummaryResponse(filename=filename, summary=doc.get("summary", ""))
@app.post("/report", response_model=ReportResponse)
async def generate_report(
user_id: str = Form(...),
project_id: str = Form(...),
filename: str = Form(...),
outline_words: int = Form(200),
report_words: int = Form(1200),
instructions: str = Form("")
):
"""
Generate a Markdown report for a single document using a lightweight CoT:
1) Gemini Flash: create a structured outline based on file summary + top chunks
2) Gemini Pro: expand into a full report with citations
"""
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
# Validate file exists
files_list = rag.list_files(user_id=user_id, project_id=project_id)
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
eff_name = filenames_ci.get(filename.lower(), filename)
doc_sum = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=eff_name)
if not doc_sum:
raise HTTPException(404, detail="No summary found for that file.")
# Retrieve top-k chunks for this file using enhanced search
query_text = f"Comprehensive report for {eff_name}"
if instructions.strip():
query_text = f"{instructions} {eff_name}"
q_vec = embedder.embed([query_text])[0]
hits = rag.vector_search(user_id=user_id, project_id=project_id, query_vector=q_vec, k=8, filenames=[eff_name], search_type="flat")
if not hits:
# Fall back to summary-only report
hits = []
# Build context
contexts = []
sources_meta = []
for h in hits:
doc = h["doc"]
chunk_id = str(doc.get("_id", ""))
contexts.append(f"[CHUNK_ID: {chunk_id}] [{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
sources_meta.append({
"filename": doc.get("filename"),
"topic_name": doc.get("topic_name"),
"page_span": doc.get("page_span"),
"score": float(h.get("score", 0.0)),
"chunk_id": chunk_id
})
context_text = "\n\n---\n\n".join(contexts) if contexts else ""
file_summary = doc_sum.get("summary", "")
# Chain-of-thought style two-step with Gemini
from utils.api.router import GEMINI_MED, GEMINI_PRO
# Step 1: Content filtering and relevance assessment based on user instructions
if instructions.strip():
filter_sys = (
"You are an expert content analyst. Given the user's specific instructions and the document content, "
"identify which sections/chunks are MOST relevant to their request. "
"Each chunk is prefixed with [CHUNK_ID: <id>] - use these exact IDs in your response. "
"Return a JSON object with this structure: {\"relevant_chunks\": [\"<chunk_id_1>\", \"<chunk_id_2>\"], \"focus_areas\": [\"key topic 1\", \"key topic 2\"]}"
)
filter_user = f"USER_INSTRUCTIONS: {instructions}\n\nDOCUMENT_SUMMARY: {file_summary}\n\nAVAILABLE_CHUNKS:\n{context_text}\n\nIdentify only the chunks that directly address the user's specific request."
try:
selection_filter = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
filter_response = await generate_answer_with_model(selection_filter, filter_sys, filter_user, gemini_rotator, nvidia_rotator, user_id="system", context="legacy_filter")
logger.info(f"[REPORT] Raw filter response: {filter_response}")
# Try to parse the filter response to get relevant chunks
import json
try:
filter_data = json.loads(filter_response)
relevant_chunk_ids = filter_data.get("relevant_chunks", [])
focus_areas = filter_data.get("focus_areas", [])
logger.info(f"[REPORT] Content filtering identified {len(relevant_chunk_ids)} relevant chunks: {relevant_chunk_ids} and focus areas: {focus_areas}")
# Filter context to only relevant chunks
if relevant_chunk_ids and hits:
filtered_hits = [h for h in hits if str(h["doc"].get("_id", "")) in relevant_chunk_ids]
if filtered_hits:
hits = filtered_hits
logger.info(f"[REPORT] Filtered context from {len(hits)} chunks to {len(filtered_hits)} relevant chunks")
else:
logger.warning(f"[REPORT] No matching chunks found for IDs: {relevant_chunk_ids}")
else:
logger.warning(f"[REPORT] No relevant chunk IDs returned or no hits available")
except json.JSONDecodeError as e:
logger.warning(f"[REPORT] Could not parse filter response, using all chunks. JSON error: {e}. Response: {filter_response}")
except Exception as e:
logger.warning(f"[REPORT] Content filtering failed: {e}")
# Step 2: Create focused outline based on user instructions
sys_outline = (
"You are an expert technical writer. Create a focused, hierarchical outline for a report based on the user's specific instructions and the MATERIALS. "
"The outline should directly address what the user asked for. Output as Markdown bullet list only. Keep it within about {} words."
).format(max(100, outline_words))
instruction_context = f"USER_REQUEST: {instructions}\n\n" if instructions.strip() else ""
user_outline = f"{instruction_context}MATERIALS:\n\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
try:
# Step 1: Outline with Flash/Med
selection_outline = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
outline_md = await generate_answer_with_model(selection_outline, sys_outline, user_outline, gemini_rotator, nvidia_rotator, user_id="system", context="legacy_outline")
except Exception as e:
logger.warning(f"Report outline failed: {e}")
outline_md = "# Report Outline\n\n- Introduction\n- Key Topics\n- Conclusion"
# Step 3: Generate focused report based on user instructions and filtered content
instruction_focus = f"FOCUS ON: {instructions}\n\n" if instructions.strip() else ""
sys_report = (
"You are an expert report writer. Write a focused, comprehensive Markdown report that directly addresses the user's specific request. "
"Using the OUTLINE and MATERIALS:\n"
"- Structure the report to answer exactly what the user asked for\n"
"- Use clear section headings\n"
"- Keep content factual and grounded in the provided materials\n"
f"- Include brief citations like (source: {eff_name}, topic) - use the actual filename provided\n"
"- If the user asked for a specific section/topic, focus heavily on that\n"
f"- Target length ~{max(600, report_words)} words\n"
"- Ensure the report directly fulfills the user's request"
)
user_report = f"{instruction_focus}OUTLINE:\n{outline_md}\n\nMATERIALS:\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
try:
selection_report = {"provider": "gemini", "model": os.getenv("GEMINI_PRO", "gemini-2.5-pro")}
report_md = await generate_answer_with_model(selection_report, sys_report, user_report, gemini_rotator, nvidia_rotator, user_id="system", context="legacy_report")
except Exception as e:
logger.error(f"Report generation failed: {e}")
report_md = outline_md + "\n\n" + file_summary
return ReportResponse(filename=eff_name, report_markdown=report_md, sources=sources_meta)
@app.post("/report/pdf")
async def generate_report_pdf(
user_id: str = Form(...),
project_id: str = Form(...),
report_content: str = Form(...)
):
"""
Generate a PDF from report content using the PDF utility module
"""
from utils.service.pdf import generate_report_pdf as generate_pdf
from fastapi.responses import Response
try:
pdf_content = await generate_pdf(report_content, user_id, project_id)
# Return PDF as response
return Response(
content=pdf_content,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename=report-{datetime.now().strftime('%Y-%m-%d')}.pdf"}
)
except HTTPException:
# Re-raise HTTP exceptions as-is
raise
# ────────────────────────────── Enhanced RAG Helper Functions ──────────────────────────────
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
"""
Generate multiple query variations using Chain of Thought reasoning
"""
if not nvidia_rotator:
return [question] # Fallback to original question
try:
# Use NVIDIA to generate query variations
sys_prompt = """You are an expert at query expansion and reformulation. Given a user question, generate 3-5 different ways to ask the same question that would help retrieve relevant information from a document database.
Focus on:
1. Different terminology and synonyms
2. More specific technical terms
3. Broader conceptual queries
4. Question reformulations
Return only the variations, one per line, no numbering or extra text."""
user_prompt = f"Original question: {question}\n\nGenerate query variations:"
from utils.api.router import generate_answer_with_model
selection = {"provider": "nvidia", "model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct")}
response = await generate_answer_with_model(selection, sys_prompt, user_prompt, gemini_rotator, nvidia_rotator, user_id="system", context="legacy_analysis")
# Parse variations
variations = [line.strip() for line in response.split('\n') if line.strip()]
variations = [v for v in variations if len(v) > 10] # Filter out too short variations
# Always include original question
if question not in variations:
variations.insert(0, question)
return variations[:5] # Limit to 5 variations
except Exception as e:
logger.warning(f"Query variation generation failed: {e}")
return [question]
def _deduplicate_and_rank_hits(all_hits: List[Dict], original_question: str) -> List[Dict]:
"""
Deduplicate hits by chunk ID and rank by relevance to original question
"""
if not all_hits:
return []
# Deduplicate by chunk ID
seen_ids = set()
unique_hits = []
for hit in all_hits:
chunk_id = str(hit.get("doc", {}).get("_id", ""))
if chunk_id not in seen_ids:
seen_ids.add(chunk_id)
unique_hits.append(hit)
# Simple ranking: boost scores for hits that contain question keywords
question_words = set(original_question.lower().split())
for hit in unique_hits:
content = hit.get("doc", {}).get("content", "").lower()
topic = hit.get("doc", {}).get("topic_name", "").lower()
# Count keyword matches
content_matches = sum(1 for word in question_words if word in content)
topic_matches = sum(1 for word in question_words if word in topic)
# Boost score based on keyword matches
keyword_boost = 1.0 + (content_matches * 0.1) + (topic_matches * 0.2)
hit["score"] = hit.get("score", 0.0) * keyword_boost
# Sort by boosted score
unique_hits.sort(key=lambda x: x.get("score", 0.0), reverse=True)
return unique_hits
@app.post("/chat", response_model=ChatAnswerResponse)
async def chat(
user_id: str = Form(...),
project_id: str = Form(...),
question: str = Form(...),
k: int = Form(6)
):
# Add timeout protection to prevent hanging
import asyncio
try:
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k), timeout=120.0)
except asyncio.TimeoutError:
logger.error("[CHAT] Chat request timed out after 120 seconds")
return ChatAnswerResponse(
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
sources=[],
relevant_files=[]
)
async def _chat_impl(
user_id: str,
project_id: str,
question: str,
k: int
):
"""
RAG chat that answers ONLY from uploaded materials.
- Preload all filenames + summaries; use NVIDIA to classify file relevance to question (true/false)
- Restrict vector search to relevant files (fall back to all if none)
- Bring in recent chat memory: last 3 via NVIDIA relevance; remaining 17 via semantic search
- After answering, summarize (q,a) via NVIDIA and store into LRU (last 20)
"""
import sys
from memo.core import get_memory_system
from utils.api.router import NVIDIA_SMALL # reuse default name
memory = get_memory_system()
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
# 0) Detect any filenames mentioned in the question (e.g., JADE.pdf)
# Supports .pdf, .docx, and .doc for detection purposes
# Only capture contiguous tokens ending with extension (no spaces) to avoid swallowing prompt text
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
if mentioned:
logger.info(f"[CHAT] Detected mentioned filenames in question: {list(mentioned)}")
# 0a) If the question explicitly asks for a summary/about of a single mentioned file, return its summary directly
if mentioned and (re.search(r"\b(summary|summarize|about|overview)\b", question, re.IGNORECASE)):
# Prefer direct summary when exactly one file is referenced
if len(mentioned) == 1:
fn = next(iter(mentioned))
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=fn)
if doc:
return ChatAnswerResponse(
answer=doc.get("summary", ""),
sources=[{"filename": fn, "file_summary": True}]
)
# If not found with the same casing, try case-insensitive match against stored filenames
files_ci = rag.list_files(user_id=user_id, project_id=project_id)
match = next((f["filename"] for f in files_ci if f.get("filename", "").lower() == fn.lower()), None)
if match:
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=match)
if doc:
return ChatAnswerResponse(
answer=doc.get("summary", ""),
sources=[{"filename": match, "file_summary": True}]
)
# If multiple files are referenced with summary intent, proceed to relevance flow below
# 1) Preload file list + summaries
files_list = rag.list_files(user_id=user_id, project_id=project_id) # [{filename, summary}]
# 1a) Normalize mentioned filenames against the user's library (case-insensitive)
filenames_ci_map = {f.get("filename", "").lower(): f.get("filename") for f in files_list if f.get("filename")}
mentioned_normalized = []
for mfn in mentioned:
key = mfn.lower()
if key in filenames_ci_map:
mentioned_normalized.append(filenames_ci_map[key])
if mentioned and not mentioned_normalized and files_list:
# Try looser match: contained filenames ignoring spaces
norm = {f.get("filename", "").lower().replace(" ", ""): f.get("filename") for f in files_list if f.get("filename")}
for mfn in mentioned:
key2 = mfn.lower().replace(" ", "")
if key2 in norm:
mentioned_normalized.append(norm[key2])
if mentioned_normalized:
logger.info(f"[CHAT] Normalized mentions to stored filenames: {mentioned_normalized}")
# 1b) Ask NVIDIA to mark relevance per file
try:
from memo.history import get_history_manager
history_manager = get_history_manager(memory)
relevant_map = await history_manager.files_relevance(question, files_list, nvidia_rotator)
relevant_files = [fn for fn, ok in relevant_map.items() if ok]
logger.info(f"[CHAT] NVIDIA relevant files: {relevant_files}")
except Exception as e:
logger.warning(f"[CHAT] NVIDIA relevance failed, defaulting to all files: {e}")
relevant_files = [f.get("filename") for f in files_list if f.get("filename")]
# 1c) Ensure any explicitly mentioned files in the question are included
# This safeguards against model misclassification
if mentioned_normalized:
extra = [fn for fn in mentioned_normalized if fn not in relevant_files]
relevant_files.extend(extra)
if extra:
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
# 2) Memory context: recent 3 via NVIDIA, remaining 17 via semantic
# Use enhanced context retrieval if available, otherwise fallback to original method
try:
from memo.history import get_history_manager
history_manager = get_history_manager(memory)
recent_related, semantic_related = await history_manager.related_recent_and_semantic_context(
user_id, question, embedder
)
except Exception as e:
logger.warning(f"[CHAT] Enhanced context retrieval failed, using fallback: {e}")
# Fallback to original method
recent3 = memory.recent(user_id, 3)
if recent3:
sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing."
numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)]
user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' values concatenated."
try:
# Track model usage for analytics
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker:
await tracker.track_model_usage(
user_id="system",
model_name=os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
provider="nvidia",
context="legacy_recent_related",
metadata={"question": question[:100]}
)
except Exception:
pass
from utils.api.rotator import robust_post_json
key = nvidia_rotator.get_key()
url = "https://integrate.api.nvidia.com/v1/chat/completions"
payload = {
"model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
"temperature": 0.0,
"messages": [
{"role": "system", "content": sys},
{"role": "user", "content": user},
]
}
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key or ''}"}
data = await robust_post_json(url, headers, payload, nvidia_rotator)
recent_related = data["choices"][0]["message"]["content"].strip()
except Exception as e:
logger.warning(f"Recent-related NVIDIA error: {e}")
recent_related = ""
else:
recent_related = ""
# Get semantic context from remaining memories
rest17 = memory.rest(user_id, 3)
if rest17:
import numpy as np
def _cosine(a: np.ndarray, b: np.ndarray) -> float:
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0
return float(np.dot(a, b) / denom)
qv = np.array(embedder.embed([question])[0], dtype="float32")
mats = embedder.embed([s.strip() for s in rest17])
sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)]
sims.sort(key=lambda x: x[0], reverse=True)
top = [s for (sc, s) in sims[:3] if sc > 0.15]
semantic_related = "\n\n".join(top) if top else ""
# 3) Enhanced query reasoning and RAG vector search
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
# Chain of Thought query breakdown for better retrieval
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
# Try multiple search strategies
all_hits = []
search_strategies = ["flat", "hybrid", "local"] # Try most accurate first
for strategy in search_strategies:
for query_variant in enhanced_queries:
q_vec = embedder.embed([query_variant])[0]
hits = rag.vector_search(
user_id=user_id,
project_id=project_id,
query_vector=q_vec,
k=k,
filenames=relevant_files if relevant_files else None,
search_type=strategy
)
if hits:
all_hits.extend(hits)
logger.info(f"[CHAT] {strategy} search with '{query_variant[:50]}...' returned {len(hits)} hits")
break # If we found hits with this strategy, move to next query
if all_hits:
break # If we found hits, don't try other strategies
# Deduplicate and rank results
hits = _deduplicate_and_rank_hits(all_hits, question)
logger.info(f"[CHAT] Final vector search returned {len(hits) if hits else 0} hits")
if not hits:
logger.info(f"[CHAT] No hits with relevance filter. relevant_files={relevant_files}")
# Fallback 1: Try with original question and flat search
q_vec_original = embedder.embed([question])[0]
hits = rag.vector_search(
user_id=user_id,
project_id=project_id,
query_vector=q_vec_original,
k=k,
filenames=relevant_files if relevant_files else None,
search_type="flat"
)
logger.info(f"[CHAT] Fallback flat search → hits={len(hits) if hits else 0}")
# Fallback 2: if we have explicit mentions, try restricting only to them
if not hits and mentioned_normalized:
hits = rag.vector_search(
user_id=user_id,
project_id=project_id,
query_vector=q_vec_original,
k=k,
filenames=mentioned_normalized,
search_type="flat"
)
logger.info(f"[CHAT] Fallback with mentioned files only → hits={len(hits) if hits else 0}")
# Fallback 3: if still empty, try without any filename restriction
if not hits:
hits = rag.vector_search(
user_id=user_id,
project_id=project_id,
query_vector=q_vec_original,
k=k,
filenames=None,
search_type="flat"
)
logger.info(f"[CHAT] Fallback with all files → hits={len(hits) if hits else 0}")
# If still no hits, and we have mentioned files, try returning their summaries if present
if not hits and mentioned_normalized:
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
summaries = [fsum_map.get(fn, "") for fn in mentioned_normalized]
summaries = [s for s in summaries if s]
if summaries:
answer = ("\n\n---\n\n").join(summaries)
return ChatAnswerResponse(
answer=answer,
sources=[{"filename": fn, "file_summary": True} for fn in mentioned_normalized],
relevant_files=mentioned_normalized
)
if not hits:
# Last resort: use summaries from relevant files if we didn't have explicit mentions normalized
candidates = mentioned_normalized or relevant_files or []
if candidates:
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
summaries = [fsum_map.get(fn, "") for fn in candidates]
summaries = [s for s in summaries if s]
if summaries:
answer = ("\n\n---\n\n").join(summaries)
logger.info(f"[CHAT] Falling back to file-level summaries for: {candidates}")
return ChatAnswerResponse(
answer=answer,
sources=[{"filename": fn, "file_summary": True} for fn in candidates],
relevant_files=candidates
)
return ChatAnswerResponse(
answer="I don't know based on your uploaded materials. Try uploading more sources or rephrasing the question.",
sources=[],
relevant_files=relevant_files or mentioned_normalized
)
# If we get here, we have hits, so continue with normal flow
# Compose context
contexts = []
sources_meta = []
for h in hits:
doc = h["doc"]
score = h["score"]
contexts.append(f"[{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
sources_meta.append({
"filename": doc.get("filename"),
"topic_name": doc.get("topic_name"),
"page_span": doc.get("page_span"),
"score": float(score),
"chunk_id": str(doc.get("_id", "")) # Convert ObjectId to string
})
context_text = "\n\n---\n\n".join(contexts)
# Add file-level summaries for relevant files
file_summary_block = ""
if relevant_files:
fsum_map = {f["filename"]: f.get("summary","") for f in files_list}
lines = [f"[{fn}] {fsum_map.get(fn, '')}" for fn in relevant_files]
file_summary_block = "\n".join(lines)
# Guardrail instruction to avoid hallucination
system_prompt = (
"You are a careful study assistant. Answer strictly using the given CONTEXT.\n"
"If the answer isn't in the context, say 'I don't know based on the provided materials.'\n"
"Write concise, clear explanations with citations like (source: actual_filename, topic).\n"
"Use the exact filename as provided in the context, not placeholders.\n"
)
# Add recent chat context and historical similarity context
history_block = ""
if recent_related or semantic_related:
history_block = "RECENT_CHAT_CONTEXT:\n" + (recent_related or "") + ("\n\nHISTORICAL_SIMILARITY_CONTEXT:\n" + semantic_related if semantic_related else "")
composed_context = ""
if history_block:
composed_context += history_block + "\n\n"
if file_summary_block:
composed_context += "FILE_SUMMARIES:\n" + file_summary_block + "\n\n"
composed_context += "DOC_CONTEXT:\n" + context_text
# Compose user prompt
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
# Choose model (cost-aware)
selection = select_model(question=question, context=composed_context)
logger.info(f"Model selection: {selection}")
# Generate answer with model
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
try:
answer = await generate_answer_with_model(
selection=selection,
system_prompt=system_prompt,
user_prompt=user_prompt,
gemini_rotator=gemini_rotator,
nvidia_rotator=nvidia_rotator,
user_id="system",
context="legacy_chat"
)
logger.info(f"[CHAT] Answer generated successfully, length: {len(answer)}")
except Exception as e:
logger.error(f"LLM error: {e}")
answer = "I had trouble contacting the language model provider just now. Please try again."
# After answering: summarize QA and store in memory (LRU, last 20)
try:
from memo.history import get_history_manager
history_manager = get_history_manager(memory)
qa_sum = await history_manager.summarize_qa_with_nvidia(question, answer, nvidia_rotator)
memory.add(user_id, qa_sum)
# Also store enhanced conversation memory if available
if memory.is_enhanced_available():
await memory.add_conversation_memory(
user_id=user_id,
question=question,
answer=answer,
project_id=project_id,
context={
"relevant_files": relevant_files,
"sources_count": len(sources_meta),
"timestamp": time.time()
}
)
except Exception as e:
logger.warning(f"QA summarize/store failed: {e}")
# Trim for logging
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
@app.get("/healthz", response_model=HealthResponse)
def health():
return HealthResponse(ok=True)
@app.get("/test-db")
async def test_database():
"""Test database connection and basic operations"""
try:
if not rag:
return {
"status": "error",
"message": "RAG store not initialized",
"error_type": "RAGStoreNotInitialized"
}
# Test basic connection
rag.client.admin.command('ping')
# Test basic insert/query
test_collection = rag.db["test_collection"]
test_doc = {"test": True, "timestamp": datetime.now(timezone.utc)}
result = test_collection.insert_one(test_doc)
# Test query
found = test_collection.find_one({"_id": result.inserted_id})
# Clean up
test_collection.delete_one({"_id": result.inserted_id})
return {
"status": "success",
"message": "Database connection and operations working correctly",
"test_id": str(result.inserted_id),
"found_doc": str(found["_id"]) if found else None
}
except Exception as e:
logger.error(f"[TEST-DB] Database test failed: {str(e)}")
return {
"status": "error",
"message": f"Database test failed: {str(e)}",
"error_type": str(type(e))
}
@app.get("/rag-status")
async def rag_status():
"""Check the status of the RAG store"""
if not rag:
return {
"status": "error",
"message": "RAG store not initialized",
"rag_available": False
}
try:
# Test connection
rag.client.admin.command('ping')
return {
"status": "success",
"message": "RAG store is available and connected",
"rag_available": True,
"database": rag.db.name,
"collections": {
"chunks": rag.chunks.name,
"files": rag.files.name
}
}
except Exception as e:
return {
"status": "error",
"message": f"RAG store connection failed: {str(e)}",
"rag_available": False,
"error": str(e)
}
# Local dev
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000) |