Spaces:
Sleeping
Sleeping
File size: 11,442 Bytes
aa9003d 6d2a17c aa9003d 8f17704 aa9003d 8f17704 aa9003d 7196ae9 aa9003d 6f12b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# ────────────────────────────── memo/persistent.py ──────────────────────────────
"""
Persistent Memory System
MongoDB-based persistent memory storage with semantic search capabilities.
"""
import os
import uuid
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime, timezone
from utils.logger import get_logger
from utils.rag.embeddings import EmbeddingClient
logger = get_logger("PERSISTENT_MEMORY", __name__)
class PersistentMemory:
"""MongoDB-based persistent memory system with semantic search"""
def __init__(self, mongo_uri: str, db_name: str, embedder: EmbeddingClient):
self.mongo_uri = mongo_uri
self.db_name = db_name
self.embedder = embedder
# MongoDB connection
try:
from pymongo import MongoClient
self.client = MongoClient(mongo_uri)
self.db = self.client[db_name]
self.memories = self.db["memories"]
# Create indexes for efficient querying
self.memories.create_index([("user_id", 1), ("memory_type", 1)])
self.memories.create_index([("user_id", 1), ("created_at", -1)])
self.memories.create_index([("user_id", 1), ("project_id", 1)])
logger.info(f"[PERSISTENT_MEMORY] Connected to MongoDB: {db_name}")
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to connect to MongoDB: {e}")
raise
def add_memory(self, user_id: str, content: str, memory_type: str,
project_id: str = None, importance: str = "medium",
tags: List[str] = None, metadata: Dict[str, Any] = None) -> str:
"""Add a memory entry to the persistent system"""
try:
# Generate embedding for semantic search
embedding = self.embedder.embed([content])[0] if content else None
# Create summary
summary = content[:200] + "..." if len(content) > 200 else content
memory_entry = {
"id": str(uuid.uuid4()),
"user_id": user_id,
"project_id": project_id,
"memory_type": memory_type,
"content": content,
"summary": summary,
"importance": importance,
"tags": tags or [],
"created_at": datetime.now(timezone.utc),
"updated_at": datetime.now(timezone.utc),
"last_accessed": datetime.now(timezone.utc),
"access_count": 0,
"embedding": embedding,
"metadata": metadata or {}
}
# Store in MongoDB
self.memories.insert_one(memory_entry)
logger.info(f"[PERSISTENT_MEMORY] Added {memory_type} memory for user {user_id}")
return memory_entry["id"]
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to add memory: {e}")
raise
def get_memories(self, user_id: str, memory_type: str = None,
project_id: str = None, limit: int = 50) -> List[Dict[str, Any]]:
"""Get memories for a user with optional filtering"""
try:
query = {"user_id": user_id}
if memory_type:
query["memory_type"] = memory_type
if project_id:
query["project_id"] = project_id
cursor = self.memories.find(query).sort("created_at", -1).limit(limit)
return list(cursor)
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to get memories: {e}")
return []
def search_memories(self, user_id: str, query: str, memory_types: List[str] = None,
project_id: str = None, limit: int = 10) -> List[Tuple[Dict[str, Any], float]]:
"""Search memories using semantic similarity"""
try:
# Generate query embedding
query_embedding = self.embedder.embed([query])[0]
# Build MongoDB query
mongo_query = {
"user_id": user_id,
"embedding": {"$exists": True}
}
if memory_types:
mongo_query["memory_type"] = {"$in": memory_types}
if project_id:
mongo_query["project_id"] = project_id
# Get all matching memories
cursor = self.memories.find(mongo_query)
# Calculate similarities
results = []
for doc in cursor:
try:
if doc.get("embedding"):
# Calculate cosine similarity
similarity = self._cosine_similarity(query_embedding, doc["embedding"])
results.append((doc, similarity))
except Exception as e:
logger.warning(f"[PERSISTENT_MEMORY] Failed to process memory for search: {e}")
continue
# Sort by similarity and return top results
results.sort(key=lambda x: x[1], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to search memories: {e}")
return []
def _cosine_similarity(self, a: List[float], b: List[float]) -> float:
"""Calculate cosine similarity between two vectors"""
try:
import numpy as np
from memo.context import cosine_similarity
a_np = np.array(a)
b_np = np.array(b)
return cosine_similarity(a_np, b_np)
except Exception:
return 0.0
def clear_user_memories(self, user_id: str) -> int:
"""Clear all memories for a user"""
try:
result = self.memories.delete_many({"user_id": user_id})
logger.info(f"[PERSISTENT_MEMORY] Cleared {result.deleted_count} memories for user {user_id}")
return result.deleted_count
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to clear user memories: {e}")
return 0
def clear_project_memories(self, user_id: str, project_id: str) -> int:
"""Clear all memories for a specific user and project"""
try:
result = self.memories.delete_many({"user_id": user_id, "project_id": project_id})
logger.info(f"[PERSISTENT_MEMORY] Cleared {result.deleted_count} memories for user {user_id}, project {project_id}")
return result.deleted_count
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to clear project memories: {e}")
return 0
def get_memory_stats(self, user_id: str) -> Dict[str, Any]:
"""Get memory statistics for a user"""
try:
stats = {
"total_memories": self.memories.count_documents({"user_id": user_id}),
"by_type": {},
"recent_activity": 0
}
# Count by memory type
pipeline = [
{"$match": {"user_id": user_id}},
{"$group": {"_id": "$memory_type", "count": {"$sum": 1}}}
]
for result in self.memories.aggregate(pipeline):
stats["by_type"][result["_id"]] = result["count"]
# Recent activity (last 7 days)
from datetime import timedelta
week_ago = datetime.now(timezone.utc) - timedelta(days=7)
stats["recent_activity"] = self.memories.count_documents({
"user_id": user_id,
"created_at": {"$gte": week_ago}
})
return stats
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to get memory stats: {e}")
return {}
def update_memory(self, memory_id: str, content: str = None, importance: str = None,
tags: List[str] = None, metadata: Dict[str, Any] = None) -> bool:
"""Update an existing memory entry"""
try:
update_data = {"updated_at": datetime.now(timezone.utc)}
if content is not None:
update_data["content"] = content
update_data["summary"] = content[:200] + "..." if len(content) > 200 else content
# Update embedding if content changed
update_data["embedding"] = self.embedder.embed([content])[0]
if importance is not None:
update_data["importance"] = importance
if tags is not None:
update_data["tags"] = tags
if metadata is not None:
update_data["metadata"] = metadata
result = self.memories.update_one(
{"id": memory_id},
{"$set": update_data}
)
if result.modified_count > 0:
logger.info(f"[PERSISTENT_MEMORY] Updated memory {memory_id}")
return True
else:
logger.warning(f"[PERSISTENT_MEMORY] Memory {memory_id} not found for update")
return False
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to update memory: {e}")
return False
def delete_memory(self, memory_id: str) -> bool:
"""Delete a specific memory entry"""
try:
result = self.memories.delete_one({"id": memory_id})
if result.deleted_count > 0:
logger.info(f"[PERSISTENT_MEMORY] Deleted memory {memory_id}")
return True
else:
logger.warning(f"[PERSISTENT_MEMORY] Memory {memory_id} not found for deletion")
return False
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to delete memory: {e}")
return False
def get_memory_by_id(self, memory_id: str) -> Optional[Dict[str, Any]]:
"""Get a specific memory by its ID"""
try:
memory = self.memories.find_one({"id": memory_id})
if memory:
# Increment access count
self.increment_access(memory_id)
return memory
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to get memory by ID: {e}")
return None
def increment_access(self, memory_id: str) -> bool:
"""Increment access count and update last accessed time"""
try:
result = self.memories.update_one(
{"id": memory_id},
{
"$inc": {"access_count": 1},
"$set": {"last_accessed": datetime.now(timezone.utc)}
}
)
return result.modified_count > 0
except Exception as e:
logger.error(f"[PERSISTENT_MEMORY] Failed to increment access: {e}")
return False |