Spaces:
Sleeping
Sleeping
| # ────────────────────────────── memo/history.py ────────────────────────────── | |
| import os | |
| import json | |
| import logging | |
| from typing import List, Dict, Any, Tuple | |
| import numpy as np | |
| from utils.logger import get_logger | |
| from utils.rotator import robust_post_json | |
| from utils.embeddings import EmbeddingClient | |
| logger = get_logger("RAG", __name__) | |
| NVIDIA_SMALL = os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct") | |
| async def _nvidia_chat(system_prompt: str, user_prompt: str, nvidia_key: str, rotator) -> str: | |
| """ | |
| Minimal NVIDIA Chat call that enforces no-comment concise outputs. | |
| """ | |
| url = "https://integrate.api.nvidia.com/v1/chat/completions" | |
| payload = { | |
| "model": NVIDIA_SMALL, | |
| "temperature": 0.0, | |
| "messages": [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_prompt}, | |
| ] | |
| } | |
| headers = {"Content-Type": "application/json", "Authorization": f"Bearer {nvidia_key or ''}"} | |
| data = None | |
| try: | |
| data = await robust_post_json(url, headers, payload, rotator) | |
| return data["choices"][0]["message"]["content"] | |
| except Exception as e: | |
| logger.warning(f"NVIDIA chat error: {e} • response: {data}") | |
| return "" | |
| def _safe_json(s: str) -> Any: | |
| try: | |
| return json.loads(s) | |
| except Exception: | |
| # Try to extract a JSON object from text | |
| start = s.find("{") | |
| end = s.rfind("}") | |
| if start != -1 and end != -1 and end > start: | |
| try: | |
| return json.loads(s[start:end+1]) | |
| except Exception: | |
| return {} | |
| return {} | |
| async def summarize_qa_with_nvidia(question: str, answer: str, rotator) -> str: | |
| """ | |
| Returns a single line block: | |
| q: <concise>\na: <concise> | |
| No extra commentary. | |
| """ | |
| sys = "You are a terse summarizer. Output exactly two lines:\nq: <short question summary>\na: <short answer summary>\nNo extra text." | |
| user = f"Question:\n{question}\n\nAnswer:\n{answer}" | |
| key = rotator.get_key() | |
| out = await _nvidia_chat(sys, user, key, rotator) | |
| # Basic guard if the model returns extra prose | |
| lines = [ln.strip() for ln in out.splitlines() if ln.strip()] | |
| ql = next((l for l in lines if l.lower().startswith('q:')), None) | |
| al = next((l for l in lines if l.lower().startswith('a:')), None) | |
| if not ql or not al: | |
| # Fallback truncate | |
| ql = "q: " + (question.strip()[:160] + ("…" if len(question.strip()) > 160 else "")) | |
| al = "a: " + (answer.strip()[:220] + ("…" if len(answer.strip()) > 220 else "")) | |
| return f"{ql}\n{al}" | |
| async def files_relevance(question: str, file_summaries: List[Dict[str, str]], rotator) -> Dict[str, bool]: | |
| """ | |
| Ask NVIDIA model to mark each file as relevant (true) or not (false) for the question. | |
| Returns {filename: bool} | |
| """ | |
| sys = "You classify file relevance. Return STRICT JSON only with shape {\"relevance\":[{\"filename\":\"...\",\"relevant\":true|false}]}." | |
| items = [{"filename": f["filename"], "summary": f.get("summary","")} for f in file_summaries] | |
| user = f"Question: {question}\n\nFiles:\n{json.dumps(items, ensure_ascii=False)}\n\nReturn JSON only." | |
| key = rotator.get_key() | |
| out = await _nvidia_chat(sys, user, key, rotator) | |
| data = _safe_json(out) or {} | |
| rels = {} | |
| for row in data.get("relevance", []): | |
| fn = row.get("filename") | |
| rv = row.get("relevant") | |
| if isinstance(fn, str) and isinstance(rv, bool): | |
| rels[fn] = rv | |
| # If parsing failed, default to considering all files possibly relevant | |
| if not rels and file_summaries: | |
| rels = {f["filename"]: True for f in file_summaries} | |
| return rels | |
| def _cosine(a: np.ndarray, b: np.ndarray) -> float: | |
| denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0 | |
| return float(np.dot(a, b) / denom) | |
| def _as_text(block: str) -> str: | |
| return block.strip() | |
| async def related_recent_and_semantic_context(user_id: str, question: str, memory, embedder: EmbeddingClient, topk_sem: int = 3) -> Tuple[str, str]: | |
| """ | |
| Returns (recent_related_text, semantic_related_text). | |
| - recent_related_text: NVIDIA checks the last 3 summaries for direct relatedness. | |
| - semantic_related_text: cosine-sim search over the remaining 17 summaries (top-k). | |
| """ | |
| recent3 = memory.recent(user_id, 3) | |
| rest17 = memory.rest(user_id, 3) | |
| recent_text = "" | |
| if recent3: | |
| sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing." | |
| numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)] | |
| user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' lines concatenated." | |
| key = None # We'll let robust_post_json handle rotation via rotator param | |
| # Semantic over rest17 | |
| sem_text = "" | |
| if rest17: | |
| qv = np.array(embedder.embed([question])[0], dtype="float32") | |
| mats = embedder.embed([_as_text(s) for s in rest17]) | |
| sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)] | |
| sims.sort(key=lambda x: x[0], reverse=True) | |
| top = [s for (sc, s) in sims[:topk_sem] if sc > 0.15] # small threshold | |
| if top: | |
| sem_text = "\n\n".join(top) | |
| # Return recent empty (to be filled by caller using NVIDIA), and semantic text | |
| return ("", sem_text) | |