EdSummariser / memo /retrieval.py
LiamKhoaLe's picture
Upd NVIDIA ana
7a1ebee
# ────────────────────────────── memo/retrieval.py ──────────────────────────────
"""
Context Retrieval and Enhancement
Handles intelligent context retrieval, enhancement decisions,
and input optimization for natural conversation flow.
"""
import re, os
from typing import List, Dict, Any, Tuple, Optional
from utils.logger import get_logger
from utils.rag.embeddings import EmbeddingClient
from memo.context import cosine_similarity, semantic_context
logger = get_logger("RETRIEVAL_MANAGER", __name__)
class RetrievalManager:
"""
Manages context retrieval and enhancement for conversations.
"""
def __init__(self, memory_system, embedder: EmbeddingClient):
self.memory_system = memory_system
self.embedder = embedder
async def get_smart_context(self, user_id: str, question: str,
nvidia_rotator=None, project_id: Optional[str] = None,
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
"""
Get intelligent context for conversation with enhanced memory planning.
Args:
user_id: User identifier
question: Current question/instruction
nvidia_rotator: NVIDIA API rotator for AI enhancement
project_id: Project context
conversation_mode: "chat" or "report"
Returns:
Tuple of (recent_context, semantic_context, metadata)
"""
try:
# Use the new memory planning system from core memory
return await self.memory_system.get_smart_context(
user_id, question, nvidia_rotator, project_id, conversation_mode
)
except Exception as e:
logger.error(f"[RETRIEVAL_MANAGER] Smart context failed: {e}")
# Fallback to legacy approach
try:
return await self._get_legacy_smart_context(
user_id, question, nvidia_rotator, project_id, conversation_mode
)
except Exception as fallback_error:
logger.error(f"[RETRIEVAL_MANAGER] Legacy fallback also failed: {fallback_error}")
return "", "", {"error": str(e)}
async def _get_legacy_smart_context(self, user_id: str, question: str,
nvidia_rotator=None, project_id: Optional[str] = None,
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
"""Legacy smart context retrieval as fallback"""
try:
# Check for conversation session continuity
from memo.sessions import get_session_manager
session_manager = get_session_manager()
session_info = session_manager.get_or_create_session(user_id, question, conversation_mode)
# Get enhanced context based on conversation state
if session_info["is_continuation"]:
recent_context, semantic_context = await self._get_continuation_context(
user_id, question, session_info, nvidia_rotator, project_id
)
else:
recent_context, semantic_context = await self._get_fresh_context(
user_id, question, nvidia_rotator, project_id
)
# Enhance question/instructions with context if beneficial
enhanced_input, context_used = await self._enhance_input_with_context(
question, recent_context, semantic_context, nvidia_rotator, conversation_mode, user_id
)
# Update session tracking
session_manager.update_session(user_id, question, enhanced_input, context_used)
# Prepare metadata
metadata = {
"session_id": session_info["session_id"],
"is_continuation": session_info["is_continuation"],
"context_enhanced": context_used,
"enhanced_input": enhanced_input,
"conversation_depth": session_info["depth"],
"last_activity": session_info["last_activity"],
"legacy_mode": True
}
return recent_context, semantic_context, metadata
except Exception as e:
logger.error(f"[RETRIEVAL_MANAGER] Legacy smart context failed: {e}")
return "", "", {"error": str(e)}
async def _get_continuation_context(self, user_id: str, question: str,
session_info: Dict[str, Any], nvidia_rotator,
project_id: Optional[str]) -> Tuple[str, str]:
"""Get context for conversation continuation"""
try:
# Use enhanced context retrieval with focus on recent conversation
if self.memory_system.is_enhanced_available():
recent_context, semantic_context = await self.memory_system.get_conversation_context(
user_id, question, project_id
)
else:
# Fallback to legacy with enhanced selection
recent_memories = self.memory_system.recent(user_id, 5) # More recent for continuation
rest_memories = self.memory_system.rest(user_id, 5)
recent_context = ""
if recent_memories and nvidia_rotator:
try:
from memo.nvidia import related_recent_context
recent_context = await related_recent_context(question, recent_memories, nvidia_rotator)
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] NVIDIA recent context failed: {e}")
recent_context = await semantic_context(question, recent_memories, self.embedder, 3)
semantic_context = ""
if rest_memories:
semantic_context = await semantic_context(question, rest_memories, self.embedder, 5)
return recent_context, semantic_context
except Exception as e:
logger.error(f"[RETRIEVAL_MANAGER] Continuation context failed: {e}")
return "", ""
async def _get_fresh_context(self, user_id: str, question: str,
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str]:
"""Get context for fresh conversation or context switch"""
try:
# Use standard context retrieval
if self.memory_system.is_enhanced_available():
recent_context, semantic_context = await self.memory_system.get_conversation_context(
user_id, question, project_id
)
else:
# Legacy fallback
recent_memories = self.memory_system.recent(user_id, 3)
rest_memories = self.memory_system.rest(user_id, 3)
recent_context = await semantic_context(question, recent_memories, self.embedder, 2)
semantic_context = await semantic_context(question, rest_memories, self.embedder, 3)
return recent_context, semantic_context
except Exception as e:
logger.error(f"[RETRIEVAL_MANAGER] Fresh context failed: {e}")
return "", ""
async def _enhance_input_with_context(self, original_input: str, recent_context: str,
semantic_context: str, nvidia_rotator,
conversation_mode: str, user_id: str = "") -> Tuple[str, bool]:
"""Enhance input with relevant context if beneficial"""
try:
# Determine if enhancement would be beneficial
should_enhance = await self._should_enhance_input(
original_input, recent_context, semantic_context, nvidia_rotator, user_id
)
if not should_enhance:
return original_input, False
# Enhance based on conversation mode
if conversation_mode == "chat":
return await self._enhance_question(original_input, recent_context, semantic_context, nvidia_rotator, user_id)
else: # report mode
return await self._enhance_instructions(original_input, recent_context, semantic_context, nvidia_rotator, user_id)
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] Input enhancement failed: {e}")
return original_input, False
async def _should_enhance_input(self, original_input: str, recent_context: str,
semantic_context: str, nvidia_rotator, user_id: str = "") -> bool:
"""Determine if input should be enhanced with context"""
try:
# Don't enhance if no context available
if not recent_context and not semantic_context:
return False
# Don't enhance very specific questions that seem complete
if len(original_input.split()) > 20: # Long, detailed questions
return False
# Don't enhance if input already contains context indicators
context_indicators = ["based on", "from our", "as we discussed", "following up", "regarding"]
if any(indicator in original_input.lower() for indicator in context_indicators):
return False
# Use NVIDIA to determine if enhancement would be helpful
if nvidia_rotator:
try:
from utils.api.router import generate_answer_with_model
from utils.analytics import get_analytics_tracker
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="enhancement_decision",
metadata={"question": question[:100]}
)
sys_prompt = """You are an expert at determining if a user's question would benefit from additional context.
Given a user's question and available context, determine if enhancing the question with context would:
1. Make the answer more relevant and helpful
2. Provide better continuity in conversation
3. Not make the question unnecessarily complex
Respond with only "YES" or "NO"."""
user_prompt = f"""USER QUESTION: {original_input}
AVAILABLE CONTEXT:
Recent: {recent_context[:200]}...
Semantic: {semantic_context[:200]}...
Should this question be enhanced with context?"""
# Track memory agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker and user_id:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="enhancement_decision",
metadata={"input": original_input[:100]}
)
except Exception:
pass
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="enhancement_decision",
metadata={"question": question[:100]}
)
# Track memo agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memo",
action="enhance",
context="enhancement_decision",
metadata={"query": query}
)
except Exception:
pass
# Use Qwen for better context enhancement reasoning
from utils.api.router import qwen_chat_completion
response = await qwen_chat_completion(sys_prompt, user_prompt, nvidia_rotator, user_id, "enhancement_decision")
return "YES" in response.upper()
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] Enhancement decision failed: {e}")
# Fallback: enhance if we have substantial context
total_context_length = len(recent_context) + len(semantic_context)
return total_context_length > 100
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] Enhancement decision failed: {e}")
return False
async def _enhance_question(self, question: str, recent_context: str,
semantic_context: str, nvidia_rotator, user_id: str = "") -> Tuple[str, bool]:
"""Enhance question with context"""
try:
from utils.api.router import generate_answer_with_model
from utils.analytics import get_analytics_tracker
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="question_enhancement",
metadata={"question": question[:100]}
)
sys_prompt = """You are an expert at enhancing user questions with relevant conversation context.
Given a user's question and relevant context, create an enhanced question that:
1. Incorporates the context naturally and seamlessly
2. Maintains the user's original intent
3. Provides better context for answering
4. Flows naturally and doesn't sound forced
Return ONLY the enhanced question, no meta-commentary."""
context_text = ""
if recent_context:
context_text += f"Recent conversation:\n{recent_context}\n\n"
if semantic_context:
context_text += f"Related information:\n{semantic_context}\n\n"
user_prompt = f"""ORIGINAL QUESTION: {question}
RELEVANT CONTEXT:
{context_text}
Create an enhanced version that incorporates this context naturally."""
# Track memory agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker and user_id:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="question_enhancement",
metadata={"question": question[:100]}
)
except Exception:
pass
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="question_enhancement",
metadata={"question": question[:100]}
)
# Track memo agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memo",
action="enhance",
context="question_enhancement",
metadata={"query": question}
)
except Exception:
pass
# Use Qwen for better question enhancement reasoning
from utils.api.router import qwen_chat_completion
enhanced_question = await qwen_chat_completion(sys_prompt, user_prompt, nvidia_rotator, user_id, "question_enhancement")
return enhanced_question.strip(), True
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] Question enhancement failed: {e}")
return question, False
async def _enhance_instructions(self, instructions: str, recent_context: str,
semantic_context: str, nvidia_rotator, user_id: str = "") -> Tuple[str, bool]:
"""Enhance report instructions with context"""
try:
from utils.api.router import generate_answer_with_model
from utils.analytics import get_analytics_tracker
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="instruction_enhancement",
metadata={"instructions": instructions[:100]}
)
sys_prompt = """You are an expert at enhancing report instructions with relevant conversation context.
Given report instructions and relevant context, create enhanced instructions that:
1. Incorporates the context naturally and seamlessly
2. Maintains the user's original intent for the report
3. Provides better context for generating a comprehensive report
4. Flows naturally and doesn't sound forced
Return ONLY the enhanced instructions, no meta-commentary."""
context_text = ""
if recent_context:
context_text += f"Recent conversation:\n{recent_context}\n\n"
if semantic_context:
context_text += f"Related information:\n{semantic_context}\n\n"
user_prompt = f"""ORIGINAL REPORT INSTRUCTIONS: {instructions}
RELEVANT CONTEXT:
{context_text}
Create an enhanced version that incorporates this context naturally."""
# Track memory agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker and user_id:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="instruction_enhancement",
metadata={"instructions": instructions[:100]}
)
except Exception:
pass
# Track memory agent usage
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memory",
action="enhance",
context="instruction_enhancement",
metadata={"instructions": instructions[:100]}
)
# Track memo agent usage
try:
from utils.analytics import get_analytics_tracker
tracker = get_analytics_tracker()
if tracker:
await tracker.track_agent_usage(
user_id=user_id,
agent_name="memo",
action="enhance",
context="instruction_enhancement",
metadata={"instructions": instructions}
)
except Exception:
pass
# Use Qwen for better instruction enhancement reasoning
from utils.api.router import qwen_chat_completion
enhanced_instructions = await qwen_chat_completion(sys_prompt, user_prompt, nvidia_rotator, user_id, "instruction_enhancement")
return enhanced_instructions.strip(), True
except Exception as e:
logger.warning(f"[RETRIEVAL_MANAGER] Instructions enhancement failed: {e}")
return instructions, False
async def get_enhancement_context(self, user_id: str, question: str,
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
"""Get context specifically optimized for enhancement requests"""
try:
# Use the core memory system's enhancement context method
return await self.memory_system.get_enhancement_context(
user_id, question, nvidia_rotator, project_id
)
except Exception as e:
logger.error(f"[RETRIEVAL_MANAGER] Enhancement context failed: {e}")
return "", "", {"error": str(e)}
# ────────────────────────────── Global Instance ──────────────────────────────
_retrieval_manager: Optional[RetrievalManager] = None
def get_retrieval_manager(memory_system=None, embedder: EmbeddingClient = None) -> RetrievalManager:
"""Get the global retrieval manager instance"""
global _retrieval_manager
if _retrieval_manager is None:
if not memory_system:
from memo.core import get_memory_system
memory_system = get_memory_system()
if not embedder:
from utils.rag.embeddings import EmbeddingClient
embedder = EmbeddingClient()
_retrieval_manager = RetrievalManager(memory_system, embedder)
logger.info("[RETRIEVAL_MANAGER] Global retrieval manager initialized")
return _retrieval_manager
# def reset_retrieval_manager():
# """Reset the global retrieval manager (for testing)"""
# global _retrieval_manager
# _retrieval_manager = None