Spaces:
Sleeping
Sleeping
Commit
·
d34d874
1
Parent(s):
607bc14
Upd report planning and CoT reasoning. Upd dynamic state toggle
Browse files- helpers/models.py +5 -0
- routes/chats.py +70 -10
- routes/reports.py +314 -82
- routes/search.py +5 -1
- static/script.js +100 -2
- static/styles.css +29 -0
helpers/models.py
CHANGED
|
@@ -52,4 +52,9 @@ class ReportResponse(BaseModel):
|
|
| 52 |
report_markdown: str
|
| 53 |
sources: List[Dict[str, Any]]
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
| 52 |
report_markdown: str
|
| 53 |
sources: List[Dict[str, Any]]
|
| 54 |
|
| 55 |
+
class StatusUpdateResponse(BaseModel):
|
| 56 |
+
status: str
|
| 57 |
+
message: str
|
| 58 |
+
progress: Optional[int] = None
|
| 59 |
+
|
| 60 |
|
routes/chats.py
CHANGED
|
@@ -5,7 +5,7 @@ from typing import Any, Dict, List, Optional
|
|
| 5 |
from fastapi import Form, HTTPException
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, captioner, gemini_rotator, nvidia_rotator
|
| 8 |
-
from helpers.models import ChatMessageResponse, ChatHistoryResponse, MessageResponse, ChatAnswerResponse
|
| 9 |
from utils.service.common import trim_text
|
| 10 |
from .search import build_web_context
|
| 11 |
from utils.api.router import select_model, generate_answer_with_model
|
|
@@ -91,6 +91,25 @@ async def delete_chat_history(user_id: str, project_id: str):
|
|
| 91 |
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# ────────────────────────────── RAG Chat and Helpers ──────────────────────────────
|
| 95 |
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
|
| 96 |
"""
|
|
@@ -176,13 +195,21 @@ async def chat(
|
|
| 176 |
question: str = Form(...),
|
| 177 |
k: int = Form(6),
|
| 178 |
use_web: int = Form(0),
|
| 179 |
-
max_web: int = Form(30)
|
|
|
|
| 180 |
):
|
| 181 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
try:
|
| 183 |
-
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k, use_web=use_web, max_web=max_web), timeout=120.0)
|
| 184 |
except asyncio.TimeoutError:
|
| 185 |
logger.error("[CHAT] Chat request timed out after 120 seconds")
|
|
|
|
| 186 |
return ChatAnswerResponse(
|
| 187 |
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
|
| 188 |
sources=[],
|
|
@@ -196,13 +223,18 @@ async def _chat_impl(
|
|
| 196 |
question: str,
|
| 197 |
k: int,
|
| 198 |
use_web: int = 0,
|
| 199 |
-
max_web: int = 30
|
|
|
|
| 200 |
):
|
| 201 |
import sys
|
| 202 |
from memo.core import get_memory_system
|
| 203 |
from utils.api.router import NVIDIA_SMALL # reuse default name
|
| 204 |
memory = get_memory_system()
|
| 205 |
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
| 208 |
if mentioned:
|
|
@@ -307,8 +339,17 @@ async def _chat_impl(
|
|
| 307 |
semantic_related = "\n\n".join(top) if top else ""
|
| 308 |
|
| 309 |
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
|
| 311 |
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
all_hits = []
|
| 313 |
search_strategies = ["flat", "hybrid", "local"]
|
| 314 |
for strategy in search_strategies:
|
|
@@ -413,11 +454,16 @@ async def _chat_impl(
|
|
| 413 |
web_context_block = ""
|
| 414 |
web_sources_meta: List[Dict[str, Any]] = []
|
| 415 |
if use_web:
|
|
|
|
|
|
|
|
|
|
| 416 |
try:
|
| 417 |
-
#
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
|
|
|
|
|
|
| 421 |
except Exception as e:
|
| 422 |
logger.warning(f"[CHAT] Web augmentation failed: {e}")
|
| 423 |
|
|
@@ -447,10 +493,19 @@ async def _chat_impl(
|
|
| 447 |
if web_context_block:
|
| 448 |
composed_context += "\n\nWEB_CONTEXT:\n" + web_context_block
|
| 449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
|
| 451 |
selection = select_model(question=question, context=composed_context)
|
| 452 |
logger.info(f"Model selection: {selection}")
|
| 453 |
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
try:
|
| 455 |
answer = await generate_answer_with_model(
|
| 456 |
selection=selection,
|
|
@@ -491,6 +546,10 @@ async def _chat_impl(
|
|
| 491 |
"score": float(s.get("score", 0.0)),
|
| 492 |
"kind": "web"
|
| 493 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
|
| 495 |
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
|
| 496 |
|
|
@@ -557,7 +616,8 @@ async def chat_with_search(
|
|
| 557 |
project_id: str = Form(...),
|
| 558 |
question: str = Form(...),
|
| 559 |
k: int = Form(6),
|
| 560 |
-
max_web: int = Form(30)
|
|
|
|
| 561 |
):
|
| 562 |
"""Answer using local documents and up to 30 web sources, with URL citations."""
|
| 563 |
from memo.core import get_memory_system
|
|
@@ -565,7 +625,7 @@ async def chat_with_search(
|
|
| 565 |
logger.info("[CHAT] User Q/chat.search: %s", trim_text(question, 20).replace("\n", " "))
|
| 566 |
|
| 567 |
# 1) Reuse local RAG retrieval
|
| 568 |
-
local_resp = await _chat_impl(user_id, project_id, question, k)
|
| 569 |
|
| 570 |
# 2) Web search and fetching via shared utilities
|
| 571 |
web_context, web_sources_meta = await build_web_context(question, max_web=max_web, top_k=10)
|
|
|
|
| 5 |
from fastapi import Form, HTTPException
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, captioner, gemini_rotator, nvidia_rotator
|
| 8 |
+
from helpers.models import ChatMessageResponse, ChatHistoryResponse, MessageResponse, ChatAnswerResponse, StatusUpdateResponse
|
| 9 |
from utils.service.common import trim_text
|
| 10 |
from .search import build_web_context
|
| 11 |
from utils.api.router import select_model, generate_answer_with_model
|
|
|
|
| 91 |
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
|
| 92 |
|
| 93 |
|
| 94 |
+
# In-memory status tracking for real-time updates
|
| 95 |
+
chat_status_store = {}
|
| 96 |
+
|
| 97 |
+
@app.get("/chat/status/{session_id}", response_model=StatusUpdateResponse)
|
| 98 |
+
async def get_chat_status(session_id: str):
|
| 99 |
+
"""Get current status of a chat processing session"""
|
| 100 |
+
status = chat_status_store.get(session_id, {"status": "idle", "message": "Ready", "progress": 0})
|
| 101 |
+
return StatusUpdateResponse(**status)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def update_chat_status(session_id: str, status: str, message: str, progress: int = None):
|
| 105 |
+
"""Update chat processing status"""
|
| 106 |
+
chat_status_store[session_id] = {
|
| 107 |
+
"status": status,
|
| 108 |
+
"message": message,
|
| 109 |
+
"progress": progress
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
|
| 113 |
# ────────────────────────────── RAG Chat and Helpers ──────────────────────────────
|
| 114 |
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
|
| 115 |
"""
|
|
|
|
| 195 |
question: str = Form(...),
|
| 196 |
k: int = Form(6),
|
| 197 |
use_web: int = Form(0),
|
| 198 |
+
max_web: int = Form(30),
|
| 199 |
+
session_id: str = Form(None)
|
| 200 |
):
|
| 201 |
import asyncio
|
| 202 |
+
import uuid
|
| 203 |
+
|
| 204 |
+
# Generate session ID if not provided
|
| 205 |
+
if not session_id:
|
| 206 |
+
session_id = str(uuid.uuid4())
|
| 207 |
+
|
| 208 |
try:
|
| 209 |
+
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k, use_web=use_web, max_web=max_web, session_id=session_id), timeout=120.0)
|
| 210 |
except asyncio.TimeoutError:
|
| 211 |
logger.error("[CHAT] Chat request timed out after 120 seconds")
|
| 212 |
+
update_chat_status(session_id, "error", "Request timed out", 0)
|
| 213 |
return ChatAnswerResponse(
|
| 214 |
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
|
| 215 |
sources=[],
|
|
|
|
| 223 |
question: str,
|
| 224 |
k: int,
|
| 225 |
use_web: int = 0,
|
| 226 |
+
max_web: int = 30,
|
| 227 |
+
session_id: str = None
|
| 228 |
):
|
| 229 |
import sys
|
| 230 |
from memo.core import get_memory_system
|
| 231 |
from utils.api.router import NVIDIA_SMALL # reuse default name
|
| 232 |
memory = get_memory_system()
|
| 233 |
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
|
| 234 |
+
|
| 235 |
+
# Update status: Receiving request
|
| 236 |
+
if session_id:
|
| 237 |
+
update_chat_status(session_id, "receiving", "Receiving request...", 5)
|
| 238 |
|
| 239 |
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
| 240 |
if mentioned:
|
|
|
|
| 339 |
semantic_related = "\n\n".join(top) if top else ""
|
| 340 |
|
| 341 |
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 342 |
+
|
| 343 |
+
# Update status: Processing data (LLM generating query variations)
|
| 344 |
+
if session_id:
|
| 345 |
+
update_chat_status(session_id, "processing", "Processing data...", 15)
|
| 346 |
+
|
| 347 |
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
|
| 348 |
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
|
| 349 |
+
|
| 350 |
+
# Update status: Planning action (planning search strategy)
|
| 351 |
+
if session_id:
|
| 352 |
+
update_chat_status(session_id, "planning", "Planning action...", 25)
|
| 353 |
all_hits = []
|
| 354 |
search_strategies = ["flat", "hybrid", "local"]
|
| 355 |
for strategy in search_strategies:
|
|
|
|
| 454 |
web_context_block = ""
|
| 455 |
web_sources_meta: List[Dict[str, Any]] = []
|
| 456 |
if use_web:
|
| 457 |
+
# Update status: Searching information (web search)
|
| 458 |
+
if session_id:
|
| 459 |
+
update_chat_status(session_id, "searching", "Searching information...", 40)
|
| 460 |
try:
|
| 461 |
+
# Create status callback for web search
|
| 462 |
+
def web_status_callback(status, message, progress):
|
| 463 |
+
if session_id:
|
| 464 |
+
update_chat_status(session_id, status, message, progress)
|
| 465 |
+
|
| 466 |
+
web_context_block, web_sources_meta = await build_web_context(question, max_web=max_web, top_k=10, status_callback=web_status_callback)
|
| 467 |
except Exception as e:
|
| 468 |
logger.warning(f"[CHAT] Web augmentation failed: {e}")
|
| 469 |
|
|
|
|
| 493 |
if web_context_block:
|
| 494 |
composed_context += "\n\nWEB_CONTEXT:\n" + web_context_block
|
| 495 |
|
| 496 |
+
# Update status: Thinking solution
|
| 497 |
+
if session_id:
|
| 498 |
+
update_chat_status(session_id, "thinking", "Thinking solution...", 60)
|
| 499 |
+
|
| 500 |
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
|
| 501 |
selection = select_model(question=question, context=composed_context)
|
| 502 |
logger.info(f"Model selection: {selection}")
|
| 503 |
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
|
| 504 |
+
|
| 505 |
+
# Update status: Generating answer
|
| 506 |
+
if session_id:
|
| 507 |
+
update_chat_status(session_id, "generating", "Generating answer...", 80)
|
| 508 |
+
|
| 509 |
try:
|
| 510 |
answer = await generate_answer_with_model(
|
| 511 |
selection=selection,
|
|
|
|
| 546 |
"score": float(s.get("score", 0.0)),
|
| 547 |
"kind": "web"
|
| 548 |
})
|
| 549 |
+
# Update status: Complete
|
| 550 |
+
if session_id:
|
| 551 |
+
update_chat_status(session_id, "complete", "Answer ready", 100)
|
| 552 |
+
|
| 553 |
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
|
| 554 |
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
|
| 555 |
|
|
|
|
| 616 |
project_id: str = Form(...),
|
| 617 |
question: str = Form(...),
|
| 618 |
k: int = Form(6),
|
| 619 |
+
max_web: int = Form(30),
|
| 620 |
+
session_id: str = Form(None)
|
| 621 |
):
|
| 622 |
"""Answer using local documents and up to 30 web sources, with URL citations."""
|
| 623 |
from memo.core import get_memory_system
|
|
|
|
| 625 |
logger.info("[CHAT] User Q/chat.search: %s", trim_text(question, 20).replace("\n", " "))
|
| 626 |
|
| 627 |
# 1) Reuse local RAG retrieval
|
| 628 |
+
local_resp = await _chat_impl(user_id, project_id, question, k, use_web=1, max_web=max_web, session_id=session_id)
|
| 629 |
|
| 630 |
# 2) Web search and fetching via shared utilities
|
| 631 |
web_context, web_sources_meta = await build_web_context(question, max_web=max_web, top_k=10)
|
routes/reports.py
CHANGED
|
@@ -6,11 +6,28 @@ from fastapi import Form, HTTPException
|
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, gemini_rotator, nvidia_rotator
|
| 8 |
from .search import build_web_context
|
| 9 |
-
from helpers.models import ReportResponse
|
| 10 |
from utils.service.common import trim_text
|
| 11 |
from utils.api.router import select_model, generate_answer_with_model
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
@app.post("/report", response_model=ReportResponse)
|
| 15 |
async def generate_report(
|
| 16 |
user_id: str = Form(...),
|
|
@@ -20,9 +37,18 @@ async def generate_report(
|
|
| 20 |
report_words: int = Form(1200),
|
| 21 |
instructions: str = Form(""),
|
| 22 |
use_web: int = Form(0),
|
| 23 |
-
max_web: int = Form(20)
|
|
|
|
| 24 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 27 |
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
|
| 28 |
eff_name = filenames_ci.get(filename.lower(), filename)
|
|
@@ -55,91 +81,40 @@ async def generate_report(
|
|
| 55 |
web_context_block = ""
|
| 56 |
web_sources_meta: List[Dict] = []
|
| 57 |
if use_web:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
web_context_block, web_sources_meta = await build_web_context(
|
| 59 |
-
instructions or query_text, max_web=max_web, top_k=12
|
| 60 |
)
|
| 61 |
file_summary = doc_sum.get("summary", "")
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# Extract JSON from markdown code blocks if present
|
| 79 |
-
json_text = filter_response.strip()
|
| 80 |
-
if json_text.startswith('```json'):
|
| 81 |
-
# Remove markdown code block formatting
|
| 82 |
-
json_text = json_text[7:] # Remove ```json
|
| 83 |
-
if json_text.endswith('```'):
|
| 84 |
-
json_text = json_text[:-3] # Remove ```
|
| 85 |
-
json_text = json_text.strip()
|
| 86 |
-
elif json_text.startswith('```'):
|
| 87 |
-
# Remove generic code block formatting
|
| 88 |
-
json_text = json_text[3:] # Remove ```
|
| 89 |
-
if json_text.endswith('```'):
|
| 90 |
-
json_text = json_text[:-3] # Remove ```
|
| 91 |
-
json_text = json_text.strip()
|
| 92 |
-
|
| 93 |
-
filter_data = _json.loads(json_text)
|
| 94 |
-
relevant_chunk_ids = filter_data.get("relevant_chunks", [])
|
| 95 |
-
focus_areas = filter_data.get("focus_areas", [])
|
| 96 |
-
logger.info(f"[REPORT] Content filtering identified {len(relevant_chunk_ids)} relevant chunks: {relevant_chunk_ids} and focus areas: {focus_areas}")
|
| 97 |
-
if relevant_chunk_ids and hits:
|
| 98 |
-
filtered_hits = [h for h in hits if str(h["doc"].get("_id", "")) in relevant_chunk_ids]
|
| 99 |
-
if filtered_hits:
|
| 100 |
-
hits = filtered_hits
|
| 101 |
-
logger.info(f"[REPORT] Filtered context from {len(hits)} chunks to {len(filtered_hits)} relevant chunks")
|
| 102 |
-
else:
|
| 103 |
-
logger.warning(f"[REPORT] No matching chunks found for IDs: {relevant_chunk_ids}")
|
| 104 |
-
else:
|
| 105 |
-
logger.warning(f"[REPORT] No relevant chunk IDs returned or no hits available")
|
| 106 |
-
except _json.JSONDecodeError as e:
|
| 107 |
-
logger.warning(f"[REPORT] Could not parse filter response, using all chunks. JSON error: {e}. Response: {filter_response}")
|
| 108 |
-
except Exception as e:
|
| 109 |
-
logger.warning(f"[REPORT] Content filtering failed: {e}")
|
| 110 |
-
|
| 111 |
-
sys_outline = (
|
| 112 |
-
"You are an expert technical writer. Create a focused, hierarchical outline for a report based on the user's specific instructions and the MATERIALS. "
|
| 113 |
-
"The outline should directly address what the user asked for. Output as Markdown bullet list only. Keep it within about {} words."
|
| 114 |
-
).format(max(100, outline_words))
|
| 115 |
-
instruction_context = f"USER_REQUEST: {instructions}\n\n" if instructions.strip() else ""
|
| 116 |
-
user_outline = f"{instruction_context}MATERIALS:\n\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}\n\n[WEB_CONTEXT]\n{web_context_block}"
|
| 117 |
-
try:
|
| 118 |
-
selection_outline = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 119 |
-
outline_md = await generate_answer_with_model(selection_outline, sys_outline, user_outline, gemini_rotator, nvidia_rotator)
|
| 120 |
-
except Exception as e:
|
| 121 |
-
logger.warning(f"Report outline failed: {e}")
|
| 122 |
-
outline_md = "# Report Outline\n\n- Introduction\n- Key Topics\n- Conclusion"
|
| 123 |
-
|
| 124 |
-
instruction_focus = f"FOCUS ON: {instructions}\n\n" if instructions.strip() else ""
|
| 125 |
-
sys_report = (
|
| 126 |
-
"You are an expert report writer. Write a focused, comprehensive Markdown report that directly addresses the user's specific request. "
|
| 127 |
-
"Using the OUTLINE and MATERIALS:\n"
|
| 128 |
-
"- Structure the report to answer exactly what the user asked for\n"
|
| 129 |
-
"- Use clear section headings\n"
|
| 130 |
-
"- Keep content factual and grounded in the provided materials\n"
|
| 131 |
-
f"- Include brief citations like (source: {eff_name}, topic) - use the actual filename provided\n"
|
| 132 |
-
"- If the user asked for a specific section/topic, focus heavily on that\n"
|
| 133 |
-
f"- Target length ~{max(600, report_words)} words\n"
|
| 134 |
-
"- Ensure the report directly fulfills the user's request"
|
| 135 |
)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
# Merge local and web sources
|
| 144 |
merged_sources = list(sources_meta) + [
|
| 145 |
{"filename": s.get("url"), "topic_name": s.get("topic_name"), "score": s.get("score"), "kind": "web"}
|
|
@@ -177,3 +152,260 @@ async def generate_report_pdf(
|
|
| 177 |
raise
|
| 178 |
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, gemini_rotator, nvidia_rotator
|
| 8 |
from .search import build_web_context
|
| 9 |
+
from helpers.models import ReportResponse, StatusUpdateResponse
|
| 10 |
from utils.service.common import trim_text
|
| 11 |
from utils.api.router import select_model, generate_answer_with_model
|
| 12 |
|
| 13 |
|
| 14 |
+
# In-memory status tracking for report generation
|
| 15 |
+
report_status_store = {}
|
| 16 |
+
|
| 17 |
+
@app.get("/report/status/{session_id}", response_model=StatusUpdateResponse)
|
| 18 |
+
async def get_report_status(session_id: str):
|
| 19 |
+
"""Get current status of a report generation session"""
|
| 20 |
+
status = report_status_store.get(session_id, {"status": "idle", "message": "Ready", "progress": 0})
|
| 21 |
+
return StatusUpdateResponse(**status)
|
| 22 |
+
|
| 23 |
+
def update_report_status(session_id: str, status: str, message: str, progress: int = None):
|
| 24 |
+
"""Update report generation status"""
|
| 25 |
+
report_status_store[session_id] = {
|
| 26 |
+
"status": status,
|
| 27 |
+
"message": message,
|
| 28 |
+
"progress": progress
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
@app.post("/report", response_model=ReportResponse)
|
| 32 |
async def generate_report(
|
| 33 |
user_id: str = Form(...),
|
|
|
|
| 37 |
report_words: int = Form(1200),
|
| 38 |
instructions: str = Form(""),
|
| 39 |
use_web: int = Form(0),
|
| 40 |
+
max_web: int = Form(20),
|
| 41 |
+
session_id: str = Form(None)
|
| 42 |
):
|
| 43 |
+
import uuid
|
| 44 |
+
if not session_id:
|
| 45 |
+
session_id = str(uuid.uuid4())
|
| 46 |
+
|
| 47 |
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 48 |
+
|
| 49 |
+
# Update status: Receiving request
|
| 50 |
+
update_report_status(session_id, "receiving", "Receiving request...", 5)
|
| 51 |
+
|
| 52 |
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 53 |
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
|
| 54 |
eff_name = filenames_ci.get(filename.lower(), filename)
|
|
|
|
| 81 |
web_context_block = ""
|
| 82 |
web_sources_meta: List[Dict] = []
|
| 83 |
if use_web:
|
| 84 |
+
# Create status callback for web search
|
| 85 |
+
def web_status_callback(status, message, progress):
|
| 86 |
+
update_report_status(session_id, status, message, progress)
|
| 87 |
+
|
| 88 |
web_context_block, web_sources_meta = await build_web_context(
|
| 89 |
+
instructions or query_text, max_web=max_web, top_k=12, status_callback=web_status_callback
|
| 90 |
)
|
| 91 |
file_summary = doc_sum.get("summary", "")
|
| 92 |
|
| 93 |
+
# Step 1: Chain of Thought Planning with NVIDIA
|
| 94 |
+
logger.info("[REPORT] Starting CoT planning phase")
|
| 95 |
+
update_report_status(session_id, "planning", "Planning action...", 25)
|
| 96 |
+
cot_plan = await generate_cot_plan(instructions, file_summary, context_text, web_context_block, nvidia_rotator)
|
| 97 |
+
|
| 98 |
+
# Step 2: Execute detailed subtasks based on CoT plan
|
| 99 |
+
logger.info("[REPORT] Executing detailed subtasks")
|
| 100 |
+
update_report_status(session_id, "processing", "Processing data...", 40)
|
| 101 |
+
detailed_analysis = await execute_detailed_subtasks(cot_plan, context_text, web_context_block, eff_name, nvidia_rotator)
|
| 102 |
+
|
| 103 |
+
# Step 3: Synthesize comprehensive report from detailed analysis
|
| 104 |
+
logger.info("[REPORT] Synthesizing comprehensive report")
|
| 105 |
+
update_report_status(session_id, "thinking", "Thinking solution...", 60)
|
| 106 |
+
comprehensive_report = await synthesize_comprehensive_report(
|
| 107 |
+
instructions, cot_plan, detailed_analysis, eff_name, report_words, gemini_rotator, nvidia_rotator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
+
|
| 110 |
+
# Update status: Generating answer (final report generation)
|
| 111 |
+
update_report_status(session_id, "generating", "Generating answer...", 80)
|
| 112 |
+
|
| 113 |
+
# Update status: Complete
|
| 114 |
+
update_report_status(session_id, "complete", "Report ready", 100)
|
| 115 |
+
|
| 116 |
+
# Use the comprehensive report from CoT approach
|
| 117 |
+
report_md = comprehensive_report
|
| 118 |
# Merge local and web sources
|
| 119 |
merged_sources = list(sources_meta) + [
|
| 120 |
{"filename": s.get("url"), "topic_name": s.get("topic_name"), "score": s.get("score"), "kind": "web"}
|
|
|
|
| 152 |
raise
|
| 153 |
|
| 154 |
|
| 155 |
+
# ────────────────────────────── Chain of Thought Report Generation ──────────────────
|
| 156 |
+
|
| 157 |
+
async def generate_cot_plan(instructions: str, file_summary: str, context_text: str, web_context: str, nvidia_rotator) -> Dict[str, Any]:
|
| 158 |
+
"""Generate a detailed Chain of Thought plan for report generation using NVIDIA."""
|
| 159 |
+
sys_prompt = """You are an expert research analyst and report planner. Given a user's request and available materials, create a comprehensive plan for generating a detailed report.
|
| 160 |
+
|
| 161 |
+
Your task is to:
|
| 162 |
+
1. Analyze the user's request and identify key requirements
|
| 163 |
+
2. Break down the report into logical sections and subtasks
|
| 164 |
+
3. Identify what specific information needs to be extracted from each source
|
| 165 |
+
4. Plan the reasoning flow and argument structure
|
| 166 |
+
5. Determine the depth and rigor needed for each section
|
| 167 |
+
|
| 168 |
+
Return a JSON object with this structure:
|
| 169 |
+
{
|
| 170 |
+
"analysis": {
|
| 171 |
+
"user_intent": "What the user really wants to know",
|
| 172 |
+
"key_requirements": ["requirement1", "requirement2"],
|
| 173 |
+
"complexity_level": "basic|intermediate|advanced",
|
| 174 |
+
"focus_areas": ["area1", "area2", "area3"]
|
| 175 |
+
},
|
| 176 |
+
"report_structure": {
|
| 177 |
+
"sections": [
|
| 178 |
+
{
|
| 179 |
+
"title": "Section Title",
|
| 180 |
+
"purpose": "Why this section is needed",
|
| 181 |
+
"subtasks": [
|
| 182 |
+
{
|
| 183 |
+
"task": "Specific task description",
|
| 184 |
+
"reasoning": "Why this task is important",
|
| 185 |
+
"sources_needed": ["local", "web", "both"],
|
| 186 |
+
"depth": "surface|detailed|comprehensive"
|
| 187 |
+
}
|
| 188 |
+
]
|
| 189 |
+
}
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
"reasoning_flow": [
|
| 193 |
+
"Step 1: Start with...",
|
| 194 |
+
"Step 2: Then analyze...",
|
| 195 |
+
"Step 3: Finally synthesize..."
|
| 196 |
+
]
|
| 197 |
+
}"""
|
| 198 |
+
|
| 199 |
+
user_prompt = f"""USER REQUEST: {instructions}
|
| 200 |
+
|
| 201 |
+
AVAILABLE MATERIALS:
|
| 202 |
+
FILE SUMMARY: {file_summary}
|
| 203 |
+
|
| 204 |
+
DOCUMENT CONTEXT: {context_text[:2000]}...
|
| 205 |
+
|
| 206 |
+
WEB CONTEXT: {web_context[:2000]}...
|
| 207 |
+
|
| 208 |
+
Create a detailed plan for generating a comprehensive report that addresses the user's request."""
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 212 |
+
response = await generate_answer_with_model(selection, sys_prompt, user_prompt, None, nvidia_rotator)
|
| 213 |
+
|
| 214 |
+
# Parse JSON response
|
| 215 |
+
import json
|
| 216 |
+
json_text = response.strip()
|
| 217 |
+
if json_text.startswith('```json'):
|
| 218 |
+
json_text = json_text[7:-3].strip()
|
| 219 |
+
elif json_text.startswith('```'):
|
| 220 |
+
json_text = json_text[3:-3].strip()
|
| 221 |
+
|
| 222 |
+
plan = json.loads(json_text)
|
| 223 |
+
logger.info(f"[REPORT] CoT plan generated with {len(plan.get('report_structure', {}).get('sections', []))} sections")
|
| 224 |
+
return plan
|
| 225 |
+
|
| 226 |
+
except Exception as e:
|
| 227 |
+
logger.warning(f"[REPORT] CoT planning failed: {e}")
|
| 228 |
+
# Fallback plan
|
| 229 |
+
return {
|
| 230 |
+
"analysis": {
|
| 231 |
+
"user_intent": instructions,
|
| 232 |
+
"key_requirements": ["comprehensive analysis"],
|
| 233 |
+
"complexity_level": "intermediate",
|
| 234 |
+
"focus_areas": ["main topics"]
|
| 235 |
+
},
|
| 236 |
+
"report_structure": {
|
| 237 |
+
"sections": [
|
| 238 |
+
{
|
| 239 |
+
"title": "Introduction",
|
| 240 |
+
"purpose": "Provide overview and context",
|
| 241 |
+
"subtasks": [{"task": "Summarize key points", "reasoning": "Set foundation", "sources_needed": ["local"], "depth": "detailed"}]
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"title": "Main Analysis",
|
| 245 |
+
"purpose": "Address user's specific request",
|
| 246 |
+
"subtasks": [{"task": "Detailed analysis", "reasoning": "Core content", "sources_needed": ["both"], "depth": "comprehensive"}]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"title": "Conclusion",
|
| 250 |
+
"purpose": "Synthesize findings",
|
| 251 |
+
"subtasks": [{"task": "Summarize key insights", "reasoning": "Provide closure", "sources_needed": ["local"], "depth": "detailed"}]
|
| 252 |
+
}
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
"reasoning_flow": ["Analyze materials", "Extract key insights", "Synthesize findings"]
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
async def execute_detailed_subtasks(cot_plan: Dict[str, Any], context_text: str, web_context: str, filename: str, nvidia_rotator) -> Dict[str, Any]:
|
| 260 |
+
"""Execute detailed analysis for each subtask identified in the CoT plan."""
|
| 261 |
+
detailed_analysis = {}
|
| 262 |
+
|
| 263 |
+
for section in cot_plan.get("report_structure", {}).get("sections", []):
|
| 264 |
+
section_title = section.get("title", "Unknown Section")
|
| 265 |
+
section_analysis = {
|
| 266 |
+
"title": section_title,
|
| 267 |
+
"purpose": section.get("purpose", ""),
|
| 268 |
+
"subtask_results": []
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
for subtask in section.get("subtasks", []):
|
| 272 |
+
task = subtask.get("task", "")
|
| 273 |
+
reasoning = subtask.get("reasoning", "")
|
| 274 |
+
sources_needed = subtask.get("sources_needed", ["local"])
|
| 275 |
+
depth = subtask.get("depth", "detailed")
|
| 276 |
+
|
| 277 |
+
# Generate detailed analysis for this subtask
|
| 278 |
+
subtask_result = await analyze_subtask(
|
| 279 |
+
task, reasoning, sources_needed, depth, context_text, web_context, filename, nvidia_rotator
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
section_analysis["subtask_results"].append({
|
| 283 |
+
"task": task,
|
| 284 |
+
"reasoning": reasoning,
|
| 285 |
+
"depth": depth,
|
| 286 |
+
"analysis": subtask_result
|
| 287 |
+
})
|
| 288 |
+
|
| 289 |
+
detailed_analysis[section_title] = section_analysis
|
| 290 |
+
|
| 291 |
+
logger.info(f"[REPORT] Completed detailed analysis for {len(detailed_analysis)} sections")
|
| 292 |
+
return detailed_analysis
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
async def analyze_subtask(task: str, reasoning: str, sources_needed: List[str], depth: str,
|
| 296 |
+
context_text: str, web_context: str, filename: str, nvidia_rotator) -> str:
|
| 297 |
+
"""Analyze a specific subtask with appropriate depth and source selection."""
|
| 298 |
+
|
| 299 |
+
# Select appropriate context based on sources_needed
|
| 300 |
+
selected_context = ""
|
| 301 |
+
if "local" in sources_needed and "web" in sources_needed:
|
| 302 |
+
selected_context = f"DOCUMENT CONTEXT:\n{context_text}\n\nWEB CONTEXT:\n{web_context}"
|
| 303 |
+
elif "local" in sources_needed:
|
| 304 |
+
selected_context = f"DOCUMENT CONTEXT:\n{context_text}"
|
| 305 |
+
elif "web" in sources_needed:
|
| 306 |
+
selected_context = f"WEB CONTEXT:\n{web_context}"
|
| 307 |
+
|
| 308 |
+
# Adjust prompt based on depth requirement
|
| 309 |
+
depth_instructions = {
|
| 310 |
+
"surface": "Provide a brief, high-level analysis",
|
| 311 |
+
"detailed": "Provide a thorough, well-reasoned analysis with specific examples",
|
| 312 |
+
"comprehensive": "Provide an exhaustive, rigorous analysis with deep insights and multiple perspectives"
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
sys_prompt = f"""You are an expert analyst performing detailed research. Your task is to {task}.
|
| 316 |
+
|
| 317 |
+
REASONING: {reasoning}
|
| 318 |
+
|
| 319 |
+
DEPTH REQUIREMENT: {depth_instructions.get(depth, "Provide detailed analysis")}
|
| 320 |
+
|
| 321 |
+
Focus on:
|
| 322 |
+
- Extracting specific, relevant information
|
| 323 |
+
- Providing clear explanations and insights
|
| 324 |
+
- Supporting claims with evidence from the materials
|
| 325 |
+
- Maintaining analytical rigor and objectivity
|
| 326 |
+
- Being comprehensive yet concise
|
| 327 |
+
|
| 328 |
+
Return only the analysis, no meta-commentary."""
|
| 329 |
+
|
| 330 |
+
user_prompt = f"""TASK: {task}
|
| 331 |
+
|
| 332 |
+
MATERIALS:
|
| 333 |
+
{selected_context}
|
| 334 |
+
|
| 335 |
+
Perform the analysis as specified."""
|
| 336 |
+
|
| 337 |
+
try:
|
| 338 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 339 |
+
analysis = await generate_answer_with_model(selection, sys_prompt, user_prompt, None, nvidia_rotator)
|
| 340 |
+
return analysis.strip()
|
| 341 |
+
|
| 342 |
+
except Exception as e:
|
| 343 |
+
logger.warning(f"[REPORT] Subtask analysis failed for '{task}': {e}")
|
| 344 |
+
return f"Analysis for '{task}' could not be completed due to processing error."
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
async def synthesize_comprehensive_report(instructions: str, cot_plan: Dict[str, Any],
|
| 348 |
+
detailed_analysis: Dict[str, Any], filename: str,
|
| 349 |
+
report_words: int, gemini_rotator, nvidia_rotator) -> str:
|
| 350 |
+
"""Synthesize the detailed analysis into a comprehensive, well-structured report."""
|
| 351 |
+
|
| 352 |
+
# Prepare synthesis materials
|
| 353 |
+
analysis_summary = ""
|
| 354 |
+
for section_title, section_data in detailed_analysis.items():
|
| 355 |
+
analysis_summary += f"\n## {section_title}\n"
|
| 356 |
+
analysis_summary += f"Purpose: {section_data.get('purpose', '')}\n\n"
|
| 357 |
+
|
| 358 |
+
for subtask_result in section_data.get("subtask_results", []):
|
| 359 |
+
analysis_summary += f"### {subtask_result.get('task', '')}\n"
|
| 360 |
+
analysis_summary += f"{subtask_result.get('analysis', '')}\n\n"
|
| 361 |
+
|
| 362 |
+
reasoning_flow = cot_plan.get("reasoning_flow", [])
|
| 363 |
+
flow_text = "\n".join([f"{i+1}. {step}" for i, step in enumerate(reasoning_flow)])
|
| 364 |
+
|
| 365 |
+
sys_prompt = f"""You are an expert report writer synthesizing detailed analysis into a comprehensive report.
|
| 366 |
+
|
| 367 |
+
Your task is to create a well-structured, professional report that:
|
| 368 |
+
1. Follows the planned reasoning flow: {flow_text}
|
| 369 |
+
2. Integrates all detailed analyses seamlessly
|
| 370 |
+
3. Maintains logical flow and coherence
|
| 371 |
+
4. Provides clear, actionable insights
|
| 372 |
+
5. Uses proper academic/professional formatting
|
| 373 |
+
6. Targets approximately {report_words} words
|
| 374 |
+
|
| 375 |
+
Structure the report with:
|
| 376 |
+
- Clear section headings
|
| 377 |
+
- Logical progression of ideas
|
| 378 |
+
- Smooth transitions between sections
|
| 379 |
+
- Proper citations and references
|
| 380 |
+
- Executive summary or key takeaways
|
| 381 |
+
- Conclusion with actionable insights
|
| 382 |
+
|
| 383 |
+
Write in a professional, analytical tone suitable for business or academic contexts."""
|
| 384 |
+
|
| 385 |
+
user_prompt = f"""USER REQUEST: {instructions}
|
| 386 |
+
|
| 387 |
+
DETAILED ANALYSIS TO SYNTHESIZE:
|
| 388 |
+
{analysis_summary}
|
| 389 |
+
|
| 390 |
+
REASONING FLOW TO FOLLOW:
|
| 391 |
+
{flow_text}
|
| 392 |
+
|
| 393 |
+
Create a comprehensive report that addresses the user's request by synthesizing all the detailed analysis above."""
|
| 394 |
+
|
| 395 |
+
try:
|
| 396 |
+
# Use Gemini Pro for final synthesis (better for long-form content)
|
| 397 |
+
selection = {"provider": "gemini", "model": "gemini-2.5-pro"}
|
| 398 |
+
report = await generate_answer_with_model(selection, sys_prompt, user_prompt, gemini_rotator, nvidia_rotator)
|
| 399 |
+
|
| 400 |
+
logger.info(f"[REPORT] Comprehensive report synthesized, length: {len(report)} characters")
|
| 401 |
+
return report
|
| 402 |
+
|
| 403 |
+
except Exception as e:
|
| 404 |
+
logger.error(f"[REPORT] Report synthesis failed: {e}")
|
| 405 |
+
# Fallback: simple concatenation
|
| 406 |
+
fallback_report = f"# Report: {instructions}\n\n"
|
| 407 |
+
fallback_report += analysis_summary
|
| 408 |
+
fallback_report += f"\n\n## Conclusion\n\nThis report addresses: {instructions}"
|
| 409 |
+
return fallback_report
|
| 410 |
+
|
| 411 |
+
|
routes/search.py
CHANGED
|
@@ -598,7 +598,7 @@ async def calculate_comprehensive_score(content: str, user_query: str, url: str,
|
|
| 598 |
return max(0.0, min(1.0, comprehensive_score))
|
| 599 |
|
| 600 |
|
| 601 |
-
async def build_web_context(question: str, max_web: int = 30, top_k: int = 10) -> Tuple[str, List[Dict[str, Any]]]:
|
| 602 |
"""
|
| 603 |
Intelligent web search and content processing:
|
| 604 |
1. Extract intelligent search keywords
|
|
@@ -609,6 +609,8 @@ async def build_web_context(question: str, max_web: int = 30, top_k: int = 10) -
|
|
| 609 |
t0 = time.perf_counter()
|
| 610 |
|
| 611 |
# Step 1: Extract intelligent search keywords
|
|
|
|
|
|
|
| 612 |
keywords = await extract_search_keywords(question, nvidia_rotator)
|
| 613 |
logger.info(f"[SEARCH] Extracted keywords: {keywords}")
|
| 614 |
|
|
@@ -623,6 +625,8 @@ async def build_web_context(question: str, max_web: int = 30, top_k: int = 10) -
|
|
| 623 |
return "", []
|
| 624 |
|
| 625 |
# Step 3: Process each source with NVIDIA agent
|
|
|
|
|
|
|
| 626 |
processing_tasks = []
|
| 627 |
for result in search_results:
|
| 628 |
task = fetch_and_process_content(result["url"], result["title"], question, nvidia_rotator)
|
|
|
|
| 598 |
return max(0.0, min(1.0, comprehensive_score))
|
| 599 |
|
| 600 |
|
| 601 |
+
async def build_web_context(question: str, max_web: int = 30, top_k: int = 10, status_callback=None) -> Tuple[str, List[Dict[str, Any]]]:
|
| 602 |
"""
|
| 603 |
Intelligent web search and content processing:
|
| 604 |
1. Extract intelligent search keywords
|
|
|
|
| 609 |
t0 = time.perf_counter()
|
| 610 |
|
| 611 |
# Step 1: Extract intelligent search keywords
|
| 612 |
+
if status_callback:
|
| 613 |
+
status_callback("searching", "Searching information...", 45)
|
| 614 |
keywords = await extract_search_keywords(question, nvidia_rotator)
|
| 615 |
logger.info(f"[SEARCH] Extracted keywords: {keywords}")
|
| 616 |
|
|
|
|
| 625 |
return "", []
|
| 626 |
|
| 627 |
# Step 3: Process each source with NVIDIA agent
|
| 628 |
+
if status_callback:
|
| 629 |
+
status_callback("processing", "Processing data...", 50)
|
| 630 |
processing_tasks = []
|
| 631 |
for result in search_results:
|
| 632 |
task = fetch_and_process_content(result["url"], result["title"], question, nvidia_rotator)
|
static/script.js
CHANGED
|
@@ -499,13 +499,19 @@
|
|
| 499 |
// Save user message to chat history
|
| 500 |
await saveChatMessage(user.user_id, currentProject.project_id, 'user', question);
|
| 501 |
|
| 502 |
-
//
|
| 503 |
-
const
|
|
|
|
|
|
|
|
|
|
| 504 |
|
| 505 |
// Disable input during processing
|
| 506 |
questionInput.disabled = true;
|
| 507 |
sendBtn.disabled = true;
|
| 508 |
showButtonLoading(sendBtn, true);
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
try {
|
| 511 |
// Branch: if report mode is active → call /report with textarea as instructions
|
|
@@ -519,6 +525,7 @@
|
|
| 519 |
form.append('outline_words', '200');
|
| 520 |
form.append('report_words', '1200');
|
| 521 |
form.append('instructions', question);
|
|
|
|
| 522 |
// If Search is toggled on, enable web augmentation for report
|
| 523 |
const useWeb = searchLink && searchLink.classList.contains('active');
|
| 524 |
if (useWeb) {
|
|
@@ -542,6 +549,7 @@
|
|
| 542 |
formData.append('project_id', currentProject.project_id);
|
| 543 |
formData.append('question', question);
|
| 544 |
formData.append('k', '6');
|
|
|
|
| 545 |
// If Search is toggled on, enable web augmentation
|
| 546 |
const useWeb = searchLink && searchLink.classList.contains('active');
|
| 547 |
if (useWeb) {
|
|
@@ -573,6 +581,10 @@
|
|
| 573 |
appendMessage('assistant', errorMsg);
|
| 574 |
await saveChatMessage(user.user_id, currentProject.project_id, 'assistant', errorMsg);
|
| 575 |
} finally {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
// Re-enable input
|
| 577 |
questionInput.disabled = false;
|
| 578 |
sendBtn.disabled = false;
|
|
@@ -1072,4 +1084,90 @@
|
|
| 1072 |
}, { threshold: 0.1 });
|
| 1073 |
|
| 1074 |
document.querySelectorAll('.reveal').forEach(el => observer.observe(el));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1075 |
})();
|
|
|
|
| 499 |
// Save user message to chat history
|
| 500 |
await saveChatMessage(user.user_id, currentProject.project_id, 'user', question);
|
| 501 |
|
| 502 |
+
// Generate session ID for status tracking
|
| 503 |
+
const sessionId = 'chat_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9);
|
| 504 |
+
|
| 505 |
+
// Add thinking message with dynamic status
|
| 506 |
+
const thinkingMsg = appendMessage('thinking', 'Receiving request...');
|
| 507 |
|
| 508 |
// Disable input during processing
|
| 509 |
questionInput.disabled = true;
|
| 510 |
sendBtn.disabled = true;
|
| 511 |
showButtonLoading(sendBtn, true);
|
| 512 |
+
|
| 513 |
+
// Start status polling
|
| 514 |
+
const statusInterval = startStatusPolling(sessionId, thinkingMsg);
|
| 515 |
|
| 516 |
try {
|
| 517 |
// Branch: if report mode is active → call /report with textarea as instructions
|
|
|
|
| 525 |
form.append('outline_words', '200');
|
| 526 |
form.append('report_words', '1200');
|
| 527 |
form.append('instructions', question);
|
| 528 |
+
form.append('session_id', sessionId);
|
| 529 |
// If Search is toggled on, enable web augmentation for report
|
| 530 |
const useWeb = searchLink && searchLink.classList.contains('active');
|
| 531 |
if (useWeb) {
|
|
|
|
| 549 |
formData.append('project_id', currentProject.project_id);
|
| 550 |
formData.append('question', question);
|
| 551 |
formData.append('k', '6');
|
| 552 |
+
formData.append('session_id', sessionId);
|
| 553 |
// If Search is toggled on, enable web augmentation
|
| 554 |
const useWeb = searchLink && searchLink.classList.contains('active');
|
| 555 |
if (useWeb) {
|
|
|
|
| 581 |
appendMessage('assistant', errorMsg);
|
| 582 |
await saveChatMessage(user.user_id, currentProject.project_id, 'assistant', errorMsg);
|
| 583 |
} finally {
|
| 584 |
+
// Stop status polling
|
| 585 |
+
if (statusInterval) {
|
| 586 |
+
clearInterval(statusInterval);
|
| 587 |
+
}
|
| 588 |
// Re-enable input
|
| 589 |
questionInput.disabled = false;
|
| 590 |
sendBtn.disabled = false;
|
|
|
|
| 1084 |
}, { threshold: 0.1 });
|
| 1085 |
|
| 1086 |
document.querySelectorAll('.reveal').forEach(el => observer.observe(el));
|
| 1087 |
+
|
| 1088 |
+
// Status polling function for real-time updates
|
| 1089 |
+
function startStatusPolling(sessionId, thinkingMsg) {
|
| 1090 |
+
const isReportMode = isReportModeActive();
|
| 1091 |
+
const statusEndpoint = isReportMode ? `/report/status/${sessionId}` : `/chat/status/${sessionId}`;
|
| 1092 |
+
|
| 1093 |
+
const interval = setInterval(async () => {
|
| 1094 |
+
try {
|
| 1095 |
+
const response = await fetch(statusEndpoint);
|
| 1096 |
+
if (response.ok) {
|
| 1097 |
+
const status = await response.json();
|
| 1098 |
+
updateThinkingMessage(thinkingMsg, status.message, status.progress);
|
| 1099 |
+
|
| 1100 |
+
// Stop polling when complete or error
|
| 1101 |
+
if (status.status === 'complete' || status.status === 'error') {
|
| 1102 |
+
clearInterval(interval);
|
| 1103 |
+
}
|
| 1104 |
+
}
|
| 1105 |
+
} catch (error) {
|
| 1106 |
+
console.warn('Status polling failed:', error);
|
| 1107 |
+
}
|
| 1108 |
+
}, 500); // Poll every 500ms
|
| 1109 |
+
|
| 1110 |
+
return interval;
|
| 1111 |
+
}
|
| 1112 |
+
|
| 1113 |
+
function updateThinkingMessage(thinkingMsg, message, progress) {
|
| 1114 |
+
if (thinkingMsg && thinkingMsg.querySelector) {
|
| 1115 |
+
const progressBar = thinkingMsg.querySelector('.progress-bar');
|
| 1116 |
+
const statusText = thinkingMsg.querySelector('.status-text');
|
| 1117 |
+
|
| 1118 |
+
if (statusText) {
|
| 1119 |
+
statusText.textContent = message;
|
| 1120 |
+
}
|
| 1121 |
+
|
| 1122 |
+
if (progressBar && progress !== undefined) {
|
| 1123 |
+
progressBar.style.width = `${progress}%`;
|
| 1124 |
+
}
|
| 1125 |
+
}
|
| 1126 |
+
}
|
| 1127 |
+
|
| 1128 |
+
// Enhanced thinking message with progress bar
|
| 1129 |
+
function appendMessage(role, text, isReport = false) {
|
| 1130 |
+
const messageDiv = document.createElement('div');
|
| 1131 |
+
messageDiv.className = `msg ${role}`;
|
| 1132 |
+
|
| 1133 |
+
if (role === 'thinking') {
|
| 1134 |
+
messageDiv.innerHTML = `
|
| 1135 |
+
<div class="thinking-container">
|
| 1136 |
+
<div class="status-text">${text}</div>
|
| 1137 |
+
<div class="progress-container">
|
| 1138 |
+
<div class="progress-bar" style="width: 0%"></div>
|
| 1139 |
+
</div>
|
| 1140 |
+
</div>
|
| 1141 |
+
`;
|
| 1142 |
+
} else if (role === 'assistant') {
|
| 1143 |
+
// Render Markdown for assistant messages
|
| 1144 |
+
try {
|
| 1145 |
+
// Use marked library to convert Markdown to HTML
|
| 1146 |
+
const htmlContent = marked.parse(text);
|
| 1147 |
+
messageDiv.innerHTML = htmlContent;
|
| 1148 |
+
|
| 1149 |
+
// Add copy buttons to code blocks
|
| 1150 |
+
addCopyButtonsToCodeBlocks(messageDiv);
|
| 1151 |
+
|
| 1152 |
+
// Add download PDF button for reports
|
| 1153 |
+
if (isReport) {
|
| 1154 |
+
addDownloadPdfButton(messageDiv, text);
|
| 1155 |
+
}
|
| 1156 |
+
} catch (e) {
|
| 1157 |
+
// Fallback to plain text if Markdown parsing fails
|
| 1158 |
+
messageDiv.textContent = text;
|
| 1159 |
+
}
|
| 1160 |
+
} else {
|
| 1161 |
+
messageDiv.textContent = text;
|
| 1162 |
+
}
|
| 1163 |
+
|
| 1164 |
+
messages.appendChild(messageDiv);
|
| 1165 |
+
|
| 1166 |
+
// Scroll to bottom
|
| 1167 |
+
requestAnimationFrame(() => {
|
| 1168 |
+
messageDiv.scrollIntoView({ behavior: 'smooth', block: 'end' });
|
| 1169 |
+
});
|
| 1170 |
+
|
| 1171 |
+
return messageDiv;
|
| 1172 |
+
}
|
| 1173 |
})();
|
static/styles.css
CHANGED
|
@@ -766,6 +766,35 @@
|
|
| 766 |
font-style: italic;
|
| 767 |
}
|
| 768 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 769 |
/* Markdown content styling */
|
| 770 |
.msg.assistant h1,
|
| 771 |
.msg.assistant h2,
|
|
|
|
| 766 |
font-style: italic;
|
| 767 |
}
|
| 768 |
|
| 769 |
+
/* ────────────────────────────── Thinking Container Styles ────────────────────────────── */
|
| 770 |
+
.thinking-container {
|
| 771 |
+
display: flex;
|
| 772 |
+
flex-direction: column;
|
| 773 |
+
gap: 0.75rem;
|
| 774 |
+
}
|
| 775 |
+
|
| 776 |
+
.status-text {
|
| 777 |
+
font-style: italic;
|
| 778 |
+
color: var(--text-secondary);
|
| 779 |
+
font-size: 0.95rem;
|
| 780 |
+
}
|
| 781 |
+
|
| 782 |
+
.progress-container {
|
| 783 |
+
width: 100%;
|
| 784 |
+
height: 4px;
|
| 785 |
+
background: var(--border);
|
| 786 |
+
border-radius: 2px;
|
| 787 |
+
overflow: hidden;
|
| 788 |
+
}
|
| 789 |
+
|
| 790 |
+
.progress-bar {
|
| 791 |
+
height: 100%;
|
| 792 |
+
background: var(--gradient-accent);
|
| 793 |
+
border-radius: 2px;
|
| 794 |
+
transition: width 0.3s ease;
|
| 795 |
+
width: 0%;
|
| 796 |
+
}
|
| 797 |
+
|
| 798 |
/* Markdown content styling */
|
| 799 |
.msg.assistant h1,
|
| 800 |
.msg.assistant h2,
|