Spaces:
Sleeping
Sleeping
Commit
·
ec9f00b
1
Parent(s):
ee39cc9
Push submodules dir
Browse files- ingestion_js/app/api/health/route.ts +16 -0
- ingestion_js/lib/captioner.ts +73 -0
- ingestion_js/lib/embedder.ts +22 -0
- ingestion_js/lib/mongo.ts +72 -0
- ingestion_js/lib/parser.ts +38 -0
- ingestion_js/next.config.js +10 -0
- ingestion_js/package.json +24 -0
- ingestion_js/tsconfig.json +21 -0
ingestion_js/app/api/health/route.ts
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { NextResponse } from 'next/server'
|
| 2 |
+
import { getMongo } from '@/lib/mongo'
|
| 3 |
+
|
| 4 |
+
export const dynamic = 'force-dynamic'
|
| 5 |
+
|
| 6 |
+
export async function GET() {
|
| 7 |
+
const mongo = await getMongo()
|
| 8 |
+
let mongodb_connected = false
|
| 9 |
+
try {
|
| 10 |
+
await mongo.db.command({ ping: 1 })
|
| 11 |
+
mongodb_connected = true
|
| 12 |
+
} catch {
|
| 13 |
+
mongodb_connected = false
|
| 14 |
+
}
|
| 15 |
+
return NextResponse.json({ ok: true, mongodb_connected, service: 'ingestion_pipeline' })
|
| 16 |
+
}
|
ingestion_js/lib/captioner.ts
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
type ImageLike = { data: Buffer } | Blob | ArrayBuffer | string
|
| 2 |
+
|
| 3 |
+
async function imageToJpegBase64(input: any): Promise<string> {
|
| 4 |
+
// input will be a Buffer or ArrayBuffer from parser; expect Buffer for server-side
|
| 5 |
+
if (typeof input === 'string') return input
|
| 6 |
+
const b64 = Buffer.isBuffer(input) ? input.toString('base64') : Buffer.from(input).toString('base64')
|
| 7 |
+
return b64
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
function getNvidiaKey(): string | null {
|
| 11 |
+
const direct = process.env.NVIDIA_API || null
|
| 12 |
+
if (direct) return direct
|
| 13 |
+
for (let i = 1; i <= 5; i++) {
|
| 14 |
+
const k = process.env[`NVIDIA_API_${i}`]
|
| 15 |
+
if (k) return k
|
| 16 |
+
}
|
| 17 |
+
return null
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
export async function captionImage(imageBuffer: Buffer): Promise<string> {
|
| 21 |
+
const key = getNvidiaKey()
|
| 22 |
+
if (!key) return ''
|
| 23 |
+
const imgB64 = await imageToJpegBase64(imageBuffer)
|
| 24 |
+
const system_prompt =
|
| 25 |
+
'You are an expert vision captioner. Produce a precise, information-dense caption of the image. Do not include conversational phrases or meta commentary.'
|
| 26 |
+
const user_prompt = 'Caption this image at the finest level of detail. Return only the caption text.'
|
| 27 |
+
const payload = {
|
| 28 |
+
model: process.env.NVIDIA_MAVERICK_MODEL || 'meta/llama-4-maverick-17b-128e-instruct',
|
| 29 |
+
messages: [
|
| 30 |
+
{ role: 'system', content: system_prompt },
|
| 31 |
+
{
|
| 32 |
+
role: 'user',
|
| 33 |
+
content: [
|
| 34 |
+
{ type: 'text', text: user_prompt },
|
| 35 |
+
{ type: 'image_url', image_url: { url: `data:image/jpeg;base64,${imgB64}` } }
|
| 36 |
+
]
|
| 37 |
+
}
|
| 38 |
+
],
|
| 39 |
+
max_tokens: 512,
|
| 40 |
+
temperature: 0.2,
|
| 41 |
+
stream: false
|
| 42 |
+
}
|
| 43 |
+
const res = await fetch('https://integrate.api.nvidia.com/v1/chat/completions', {
|
| 44 |
+
method: 'POST',
|
| 45 |
+
headers: {
|
| 46 |
+
'Authorization': `Bearer ${key}`,
|
| 47 |
+
'Content-Type': 'application/json'
|
| 48 |
+
},
|
| 49 |
+
body: JSON.stringify(payload)
|
| 50 |
+
})
|
| 51 |
+
if (!res.ok) return ''
|
| 52 |
+
const data = await res.json() as any
|
| 53 |
+
const text = data?.choices?.[0]?.message?.content || ''
|
| 54 |
+
return normalizeCaption(text)
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
export function normalizeCaption(text: string): string {
|
| 58 |
+
if (!text) return ''
|
| 59 |
+
let t = text.trim()
|
| 60 |
+
const banned = [
|
| 61 |
+
'sure,', 'sure.', 'sure', 'here is', 'here are', 'this image', 'the image', 'image shows',
|
| 62 |
+
'the picture', 'the photo', 'the text describes', 'the text describe', 'it shows', 'it depicts',
|
| 63 |
+
'caption:', 'description:', 'output:', 'result:', 'answer:', 'analysis:', 'observation:'
|
| 64 |
+
]
|
| 65 |
+
const lower = t.toLowerCase()
|
| 66 |
+
for (const p of banned) {
|
| 67 |
+
if (lower.startsWith(p)) {
|
| 68 |
+
t = t.slice(p.length).trimStart()
|
| 69 |
+
break
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
return t.replace(/^['\"]|['\"]$/g, '').trim()
|
| 73 |
+
}
|
ingestion_js/lib/embedder.ts
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
export async function embedRemote(texts: string[]): Promise<number[][]> {
|
| 2 |
+
if (!texts || texts.length === 0) return []
|
| 3 |
+
const base = (process.env.EMBED_BASE_URL || '').replace(/\/$/, '')
|
| 4 |
+
if (!base) throw new Error('EMBED_BASE_URL is required')
|
| 5 |
+
const res = await fetch(`${base}/embed`, {
|
| 6 |
+
method: 'POST',
|
| 7 |
+
headers: { 'Content-Type': 'application/json' },
|
| 8 |
+
body: JSON.stringify({ texts }),
|
| 9 |
+
// 60s like Python client
|
| 10 |
+
next: { revalidate: 0 }
|
| 11 |
+
})
|
| 12 |
+
if (!res.ok) {
|
| 13 |
+
// Fail closed with zeros to avoid crashes (parity with Python fallback)
|
| 14 |
+
return Array.from({ length: texts.length }, () => Array(384).fill(0))
|
| 15 |
+
}
|
| 16 |
+
const data = await res.json() as any
|
| 17 |
+
const vectors = Array.isArray(data?.vectors) ? data.vectors : []
|
| 18 |
+
if (!Array.isArray(vectors)) {
|
| 19 |
+
return Array.from({ length: texts.length }, () => Array(384).fill(0))
|
| 20 |
+
}
|
| 21 |
+
return vectors
|
| 22 |
+
}
|
ingestion_js/lib/mongo.ts
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { MongoClient, Db } from 'mongodb'
|
| 2 |
+
|
| 3 |
+
let client: MongoClient | null = null
|
| 4 |
+
let db: Db | null = null
|
| 5 |
+
|
| 6 |
+
export async function getMongo() {
|
| 7 |
+
if (client && db) return { client, db }
|
| 8 |
+
const uri = process.env.MONGO_URI
|
| 9 |
+
const dbName = process.env.MONGO_DB || 'studybuddy'
|
| 10 |
+
if (!uri) throw new Error('MONGO_URI is required')
|
| 11 |
+
client = new MongoClient(uri)
|
| 12 |
+
await client.connect()
|
| 13 |
+
db = client.db(dbName)
|
| 14 |
+
return { client, db }
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
export const VECTOR_DIM = 384
|
| 18 |
+
|
| 19 |
+
export async function storeCards(cards: any[]) {
|
| 20 |
+
const { db } = await getMongo()
|
| 21 |
+
if (!cards || !cards.length) return
|
| 22 |
+
for (const c of cards) {
|
| 23 |
+
if (!c.embedding || c.embedding.length !== VECTOR_DIM) {
|
| 24 |
+
throw new Error(`Invalid embedding length; expected ${VECTOR_DIM}`)
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
await db.collection('chunks').insertMany(cards, { ordered: false })
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
export async function upsertFileSummary(user_id: string, project_id: string, filename: string, summary: string) {
|
| 31 |
+
const { db } = await getMongo()
|
| 32 |
+
await db.collection('files').updateOne(
|
| 33 |
+
{ user_id, project_id, filename },
|
| 34 |
+
{ $set: { summary } },
|
| 35 |
+
{ upsert: true }
|
| 36 |
+
)
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
export async function listFiles(user_id: string, project_id: string) {
|
| 40 |
+
const { db } = await getMongo()
|
| 41 |
+
const cursor = db.collection('files').find({ user_id, project_id }, { projection: { _id: 0, filename: 1, summary: 1 } }).sort({ filename: 1 })
|
| 42 |
+
return cursor.toArray()
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
export async function getFileChunks(user_id: string, project_id: string, filename: string, limit = 20) {
|
| 46 |
+
const { db } = await getMongo()
|
| 47 |
+
const cursor = db.collection('chunks').find({ user_id, project_id, filename }).limit(limit)
|
| 48 |
+
const out: any[] = []
|
| 49 |
+
for await (const doc of cursor) {
|
| 50 |
+
const d: any = {}
|
| 51 |
+
for (const [k, v] of Object.entries(doc as any)) {
|
| 52 |
+
if (k === '_id') d[k] = String(v)
|
| 53 |
+
// @ts-ignore
|
| 54 |
+
else if (v && typeof v === 'object' && typeof (v as any).toISOString === 'function') d[k] = (v as any).toISOString()
|
| 55 |
+
else d[k] = v as any
|
| 56 |
+
}
|
| 57 |
+
out.push(d)
|
| 58 |
+
}
|
| 59 |
+
return out
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
export async function deleteFileData(user_id: string, project_id: string, filename: string) {
|
| 63 |
+
const { db } = await getMongo()
|
| 64 |
+
await db.collection('chunks').deleteMany({ user_id, project_id, filename })
|
| 65 |
+
await db.collection('files').deleteMany({ user_id, project_id, filename })
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
export async function ensureIndexes() {
|
| 69 |
+
const { db } = await getMongo()
|
| 70 |
+
await db.collection('chunks').createIndex({ user_id: 1, project_id: 1, filename: 1 })
|
| 71 |
+
await db.collection('files').createIndex({ user_id: 1, project_id: 1, filename: 1 })
|
| 72 |
+
}
|
ingestion_js/lib/parser.ts
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pdfParse from 'pdf-parse'
|
| 2 |
+
import mammoth from 'mammoth'
|
| 3 |
+
|
| 4 |
+
export type Page = { page_num: number; text: string; images: Buffer[] }
|
| 5 |
+
|
| 6 |
+
export async function parsePdfBytes(buf: Buffer): Promise<Page[]> {
|
| 7 |
+
// pdf-parse: text only; image extraction is non-trivial in Node serverless
|
| 8 |
+
const data = await pdfParse(buf)
|
| 9 |
+
const text = data.text || ''
|
| 10 |
+
const pages = text.split('\f') // pdf-parse uses form-feed between pages when available
|
| 11 |
+
const out: Page[] = []
|
| 12 |
+
for (let i = 0; i < pages.length; i++) {
|
| 13 |
+
out.push({ page_num: i + 1, text: pages[i] || '', images: [] })
|
| 14 |
+
}
|
| 15 |
+
if (out.length === 0) out.push({ page_num: 1, text, images: [] })
|
| 16 |
+
return out
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
export async function parseDocxBytes(buf: Buffer): Promise<Page[]> {
|
| 20 |
+
const { value } = await mammoth.extractRawText({ buffer: buf })
|
| 21 |
+
const text = value || ''
|
| 22 |
+
return [{ page_num: 1, text, images: [] }]
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
export function inferMime(filename: string): string {
|
| 26 |
+
const lower = filename.toLowerCase()
|
| 27 |
+
if (lower.endsWith('.pdf')) return 'application/pdf'
|
| 28 |
+
if (lower.endsWith('.docx'))
|
| 29 |
+
return 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
|
| 30 |
+
return 'application/octet-stream'
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
export async function extractPages(filename: string, file: Buffer): Promise<Page[]> {
|
| 34 |
+
const mime = inferMime(filename)
|
| 35 |
+
if (mime === 'application/pdf') return parsePdfBytes(file)
|
| 36 |
+
if (mime === 'application/vnd.openxmlformats-officedocument.wordprocessingml.document') return parseDocxBytes(file)
|
| 37 |
+
throw new Error(`Unsupported file type: ${filename}`)
|
| 38 |
+
}
|
ingestion_js/next.config.js
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/** @type {import('next').NextConfig} */
|
| 2 |
+
const nextConfig = {
|
| 3 |
+
experimental: {
|
| 4 |
+
serverActions: {
|
| 5 |
+
bodySizeLimit: '50mb'
|
| 6 |
+
}
|
| 7 |
+
}
|
| 8 |
+
};
|
| 9 |
+
|
| 10 |
+
module.exports = nextConfig;
|
ingestion_js/package.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "ingestion-js",
|
| 3 |
+
"private": true,
|
| 4 |
+
"version": "0.1.0",
|
| 5 |
+
"scripts": {
|
| 6 |
+
"dev": "next dev",
|
| 7 |
+
"build": "next build",
|
| 8 |
+
"start": "next start"
|
| 9 |
+
},
|
| 10 |
+
"dependencies": {
|
| 11 |
+
"mongodb": "^6.8.0",
|
| 12 |
+
"next": "^14.2.5",
|
| 13 |
+
"react": "^18.3.1",
|
| 14 |
+
"react-dom": "^18.3.1",
|
| 15 |
+
"pdf-parse": "^1.1.1",
|
| 16 |
+
"mammoth": "^1.6.0",
|
| 17 |
+
"slugify": "^1.6.6"
|
| 18 |
+
},
|
| 19 |
+
"devDependencies": {
|
| 20 |
+
"@types/node": "^20.11.30",
|
| 21 |
+
"@types/react": "^18.2.66",
|
| 22 |
+
"typescript": "^5.4.5"
|
| 23 |
+
}
|
| 24 |
+
}
|
ingestion_js/tsconfig.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"compilerOptions": {
|
| 3 |
+
"target": "ES2022",
|
| 4 |
+
"lib": ["dom", "dom.iterable", "es2022"],
|
| 5 |
+
"allowJs": true,
|
| 6 |
+
"skipLibCheck": true,
|
| 7 |
+
"strict": false,
|
| 8 |
+
"forceConsistentCasingInFileNames": true,
|
| 9 |
+
"noEmit": true,
|
| 10 |
+
"esModuleInterop": true,
|
| 11 |
+
"module": "esnext",
|
| 12 |
+
"moduleResolution": "bundler",
|
| 13 |
+
"resolveJsonModule": true,
|
| 14 |
+
"isolatedModules": true,
|
| 15 |
+
"jsx": "preserve",
|
| 16 |
+
"incremental": true,
|
| 17 |
+
"types": ["node"]
|
| 18 |
+
},
|
| 19 |
+
"include": ["next-env.d.ts", "**/*.ts", "**/*.tsx"],
|
| 20 |
+
"exclude": ["node_modules"]
|
| 21 |
+
}
|