# ────────────────────────────── utils/rag.py ────────────────────────────── import os import math from typing import List, Dict, Any, Optional from pymongo import MongoClient, ASCENDING, TEXT from pymongo.collection import Collection from pymongo.errors import PyMongoError import numpy as np import logging from ..logger import get_logger VECTOR_DIM = 384 # all-MiniLM-L6-v2 INDEX_NAME = os.getenv("MONGO_VECTOR_INDEX", "vector_index") USE_ATLAS_VECTOR = os.getenv("ATLAS_VECTOR", "0") == "1" logger = get_logger("RAG", __name__) class RAGStore: def __init__(self, mongo_uri: str, db_name: str = "studybuddy"): self.client = MongoClient(mongo_uri) self.db = self.client[db_name] self.chunks: Collection = self.db["chunks"] self.files: Collection = self.db["files"] # ── Write ──────────────────────────────────────────────────────────────── def store_cards(self, cards: List[Dict[str, Any]]): if not cards: return for c in cards: # basic validation emb = c.get("embedding") if not emb or len(emb) != VECTOR_DIM: raise ValueError("Invalid embedding length; expected %d" % VECTOR_DIM) self.chunks.insert_many(cards, ordered=False) logger.info(f"Inserted {len(cards)} cards into MongoDB") def upsert_file_summary(self, user_id: str, project_id: str, filename: str, summary: str): self.files.update_one( {"user_id": user_id, "project_id": project_id, "filename": filename}, {"$set": {"summary": summary}}, upsert=True ) logger.info(f"Upserted summary for {filename} (user {user_id}, project {project_id})") # ── Read ──────────────────────────────────────────────────────────────── def list_cards(self, user_id: str, project_id: str, filename: Optional[str], limit: int, skip: int): q = {"user_id": user_id, "project_id": project_id} if filename: q["filename"] = filename cur = self.chunks.find(q, {"embedding": 0}).skip(skip).limit(limit).sort([("_id", ASCENDING)]) # Convert MongoDB documents to JSON-serializable format cards = [] for card in cur: serializable_card = {} for key, value in card.items(): if key == '_id': serializable_card[key] = str(value) # Convert ObjectId to string elif hasattr(value, 'isoformat'): # Handle datetime objects serializable_card[key] = value.isoformat() else: serializable_card[key] = value cards.append(serializable_card) return cards def get_file_summary(self, user_id: str, project_id: str, filename: str): doc = self.files.find_one({"user_id": user_id, "project_id": project_id, "filename": filename}) if doc: # Convert MongoDB document to JSON-serializable format serializable_doc = {} for key, value in doc.items(): if key == '_id': serializable_doc[key] = str(value) # Convert ObjectId to string elif hasattr(value, 'isoformat'): # Handle datetime objects serializable_doc[key] = value.isoformat() else: serializable_doc[key] = value return serializable_doc return None def list_files(self, user_id: str, project_id: str): """List all files for a project with their summaries""" files_cursor = self.files.find( {"user_id": user_id, "project_id": project_id}, {"_id": 0, "filename": 1, "summary": 1} ).sort("filename", ASCENDING) # Convert MongoDB documents to JSON-serializable format files = [] for file_doc in files_cursor: serializable_file = {} for key, value in file_doc.items(): if hasattr(value, 'isoformat'): # Handle datetime objects serializable_file[key] = value.isoformat() else: serializable_file[key] = value files.append(serializable_file) return files def vector_search(self, user_id: str, project_id: str, query_vector: List[float], k: int = 6, filenames: Optional[List[str]] = None, search_type: str = "hybrid"): """ Enhanced vector search with multiple strategies: - hybrid: Combines Atlas and local search - flat: Exhaustive search for maximum accuracy - atlas: Uses Atlas Vector Search only - local: Uses local cosine similarity only """ if search_type == "flat" or (search_type == "hybrid" and not USE_ATLAS_VECTOR): return self._flat_vector_search(user_id, project_id, query_vector, k, filenames) elif search_type == "atlas" and USE_ATLAS_VECTOR: return self._atlas_vector_search(user_id, project_id, query_vector, k, filenames) elif search_type == "local": return self._local_vector_search(user_id, project_id, query_vector, k, filenames) else: # Default hybrid approach if USE_ATLAS_VECTOR: atlas_results = self._atlas_vector_search(user_id, project_id, query_vector, k, filenames) if atlas_results: return atlas_results return self._local_vector_search(user_id, project_id, query_vector, k, filenames) def _atlas_vector_search(self, user_id: str, project_id: str, query_vector: List[float], k: int, filenames: Optional[List[str]] = None): """Atlas Vector Search implementation""" match_stage = {"user_id": user_id, "project_id": project_id} if filenames: match_stage["filename"] = {"$in": filenames} pipeline = [ { "$search": { "index": INDEX_NAME, "knnBeta": { "vector": query_vector, "path": "embedding", "k": k, } } }, {"$match": match_stage}, {"$project": {"doc": "$$ROOT", "score": {"$meta": "searchScore"}}}, {"$limit": k}, ] hits = list(self.chunks.aggregate(pipeline)) return self._serialize_hits(hits) def _local_vector_search(self, user_id: str, project_id: str, query_vector: List[float], k: int, filenames: Optional[List[str]] = None): """Local cosine similarity search with improved sampling""" q = {"user_id": user_id, "project_id": project_id} if filenames: q["filename"] = {"$in": filenames} # Increase sample size for better accuracy sample_limit = max(5000, k * 50) sample = list(self.chunks.find(q).sort([("_id", -1)]).limit(sample_limit)) if not sample: return [] qv = np.array(query_vector, dtype="float32") scores = [] for d in sample: v = np.array(d.get("embedding", [0]*VECTOR_DIM), dtype="float32") denom = (np.linalg.norm(qv) * np.linalg.norm(v)) or 1.0 sim = float(np.dot(qv, v) / denom) scores.append((sim, d)) scores.sort(key=lambda x: x[0], reverse=True) top = scores[:k] logger.info(f"Local vector search: {len(sample)} docs sampled, {len(top)} results") return self._serialize_results(top) def _flat_vector_search(self, user_id: str, project_id: str, query_vector: List[float], k: int, filenames: Optional[List[str]] = None): """Flat exhaustive search for maximum accuracy""" q = {"user_id": user_id, "project_id": project_id} if filenames: q["filename"] = {"$in": filenames} # Get ALL relevant documents for exhaustive search all_docs = list(self.chunks.find(q)) if not all_docs: return [] qv = np.array(query_vector, dtype="float32") scores = [] for doc in all_docs: v = np.array(doc.get("embedding", [0]*VECTOR_DIM), dtype="float32") denom = (np.linalg.norm(qv) * np.linalg.norm(v)) or 1.0 sim = float(np.dot(qv, v) / denom) scores.append((sim, doc)) scores.sort(key=lambda x: x[0], reverse=True) top = scores[:k] logger.info(f"Flat vector search: {len(all_docs)} docs searched, {len(top)} results") return self._serialize_results(top) def _serialize_hits(self, hits): """Serialize Atlas search hits""" serializable_hits = [] for hit in hits: doc = hit["doc"] serializable_doc = self._serialize_doc(doc) serializable_hits.append({ "doc": serializable_doc, "score": float(hit.get("score", 0.0)) }) return serializable_hits def _serialize_results(self, results): """Serialize local search results""" serializable_results = [] for score, doc in results: serializable_doc = self._serialize_doc(doc) serializable_results.append({ "doc": serializable_doc, "score": float(score) }) return serializable_results def _serialize_doc(self, doc): """Convert MongoDB document to JSON-serializable format""" serializable_doc = {} for key, value in doc.items(): if key == '_id': serializable_doc[key] = str(value) elif hasattr(value, 'isoformat'): serializable_doc[key] = value.isoformat() else: serializable_doc[key] = value return serializable_doc def ensure_indexes(store: RAGStore): # Basic text index for fallback keyword search (optional) try: store.chunks.create_index([("user_id", ASCENDING), ("project_id", ASCENDING), ("filename", ASCENDING)]) store.chunks.create_index([("content", TEXT), ("topic_name", TEXT), ("summary", TEXT)], name="text_idx") store.files.create_index([("user_id", ASCENDING), ("project_id", ASCENDING), ("filename", ASCENDING)], unique=True) except PyMongoError as e: logger.warning(f"Index creation warning: {e}") # Note: For Atlas Vector, create an Atlas Search index named INDEX_NAME on field "embedding" with vector options. # Example (in Atlas UI): # { # "mappings": { # "dynamic": false, # "fields": { # "embedding": { # "type": "knnVector", # "dimensions": 384, # "similarity": "cosine" # } # } # } # }