Spaces:
Running
on
T4
Running
on
T4
| import gradio as gr | |
| import os, gc, copy, torch, re | |
| from datetime import datetime | |
| from huggingface_hub import hf_hub_download | |
| from pynvml import * | |
| nvmlInit() | |
| gpu_h = nvmlDeviceGetHandleByIndex(0) | |
| ctx_limit = 1024 | |
| title = "RWKV-x060-eng_single_round_test-1B6-20240427-ctx1024" | |
| os.environ["RWKV_JIT_ON"] = '1' | |
| os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) | |
| from rwkv.model import RWKV | |
| model_path = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{title}.pth") | |
| # model_path = f"E:/{title}" | |
| model = RWKV(model=model_path, strategy='cuda fp16') | |
| from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
| pipeline = PIPELINE(model, "rwkv_vocab_v20230424") | |
| def generate_prompt(instruction): | |
| instruction = instruction.strip().replace('\r\n','\n') | |
| instruction = re.sub(r'\n+', '\n', instruction) | |
| return f"User: {instruction}\n\nAssistant:""" | |
| def evaluate( | |
| ctx, | |
| token_count=500, | |
| temperature=1.0, | |
| top_p=0.3, | |
| presencePenalty = 0.3, | |
| countPenalty = 0.3, | |
| ): | |
| args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
| alpha_frequency = countPenalty, | |
| alpha_presence = presencePenalty, | |
| token_ban = [], # ban the generation of some tokens | |
| token_stop = [0]) # stop generation whenever you see any token here | |
| ctx = generate_prompt(ctx) | |
| all_tokens = [] | |
| out_last = 0 | |
| out_str = '' | |
| occurrence = {} | |
| state = None | |
| for i in range(int(token_count)): | |
| out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
| for n in occurrence: | |
| out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
| token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
| if token in args.token_stop: | |
| break | |
| all_tokens += [token] | |
| for xxx in occurrence: | |
| occurrence[xxx] *= 0.996 | |
| if token not in occurrence: | |
| occurrence[token] = 1 | |
| else: | |
| occurrence[token] += 1 | |
| tmp = pipeline.decode(all_tokens[out_last:]) | |
| if '\ufffd' not in tmp: | |
| out_str += tmp | |
| yield out_str.strip() | |
| out_last = i + 1 | |
| gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) | |
| timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') | |
| del out | |
| del state | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| yield out_str.strip() | |
| examples = [ | |
| ["How can I craft an engaging story featuring vampires on Mars?", 700, 1, 0.3, 0.3, 0.3], | |
| ["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", 700, 1, 0.3, 0.3, 0.3], | |
| ["Write C++ code to land on moon.", 700, 1, 0.3, 0.3, 0.3], | |
| ["Write a story using the following information: a man named Alex chops a tree down.", 700, 1, 0.3, 0.3, 0.3], | |
| ["How can I persuade Elon Musk to follow me on Twitter?", 700, 1, 0.3, 0.3, 0.3], | |
| ] | |
| ########################################################################## | |
| with gr.Blocks(title=title) as demo: | |
| gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title}</h1>\n</div>") | |
| with gr.Tab("Raw Generation"): | |
| gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/temp-latest-training-models) with 1.6B params tuned on <b>single-round English</b> Q & A - a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). And we have [200+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(lines=2, label="Prompt", value="How can we craft an engaging story featuring vampires on Mars?") | |
| token_count = gr.Slider(10, 700, label="Max Tokens", step=10, value=700) | |
| temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0) | |
| top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3) | |
| presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0) | |
| count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=1) | |
| with gr.Column(): | |
| with gr.Row(): | |
| submit = gr.Button("Submit", variant="primary") | |
| clear = gr.Button("Clear", variant="secondary") | |
| output = gr.Textbox(label="Output", lines=50) | |
| data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"]) | |
| submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output], concurrency_limit=1) | |
| clear.click(lambda: None, [], [output]) | |
| data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty]) | |
| demo.queue(max_size=10) | |
| demo.launch(share=False) | |