import gradio as gr from transformers import pipeline # Load the model locally MODEL = "Intelligent-Internet/II-Medical-8B" print("🔄 Loading medical model locally...") medical_tutor = pipeline( "text-generation", model=MODEL, device=-1, # Use CPU torch_dtype="auto" ) print("✅ Model loaded!") def chat(message, history): # Simple medical tutoring prompt prompt = f"""You are a medical tutor. Provide educational information about: {message} Remember: This is for learning purposes only, not medical advice. Answer:""" response = medical_tutor( prompt, max_new_tokens=150, temperature=0.7, do_sample=True, pad_token_id=medical_tutor.tokenizer.eos_token_id )[0]['generated_text'] # Extract just the answer part answer = response.split("Answer:")[-1].strip() return answer gr.ChatInterface( chat, title="🩺 Medical Tutor", ).launch(server_port=7860)