Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +116 -0
- packages.txt +1 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import platform
|
| 3 |
+
import time
|
| 4 |
+
import logging
|
| 5 |
+
from fastapi import FastAPI, UploadFile, File
|
| 6 |
+
import uvicorn
|
| 7 |
+
import pytesseract
|
| 8 |
+
import streamlit as st
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from typing import List
|
| 12 |
+
|
| 13 |
+
from transformers import TableTransformerForObjectDetection, DetrFeatureExtractor
|
| 14 |
+
from codes.table_recognition import TableRecognition
|
| 15 |
+
from codes.table_detection import TableDetection
|
| 16 |
+
from codes.table_preprocessing import TablePreprocessor
|
| 17 |
+
from codes.data_extraction import TextDataExtraction
|
| 18 |
+
from datatypes.config import Config, tesseract_config, model_config
|
| 19 |
+
|
| 20 |
+
if platform.system() == 'Windows':
|
| 21 |
+
pytesseract.pytesseract.tesseract_cmd = tesseract_config['tesseractpath']
|
| 22 |
+
|
| 23 |
+
# Table detection-recognition model loading function
|
| 24 |
+
@st.experimental_singleton
|
| 25 |
+
def load_models():
|
| 26 |
+
try:
|
| 27 |
+
# models loading from local
|
| 28 |
+
# detection_model = TableTransformerForObjectDetection.from_pretrained(model_config['detection_model_path'])
|
| 29 |
+
# recognition_model = TableTransformerForObjectDetection.from_pretrained(model_config['recognition_model_path'])
|
| 30 |
+
|
| 31 |
+
# models loading from hugginfacehub
|
| 32 |
+
detection_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
|
| 33 |
+
recognition_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 34 |
+
|
| 35 |
+
return detection_model, recognition_model
|
| 36 |
+
except:
|
| 37 |
+
print('Table detection or recognition model loading is failed!!')
|
| 38 |
+
|
| 39 |
+
# Models loading
|
| 40 |
+
detection_model, recognition_model = load_models()
|
| 41 |
+
|
| 42 |
+
# Detection feature extractor
|
| 43 |
+
detection_feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
| 44 |
+
# Recognition feature extractor
|
| 45 |
+
recognition_feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
| 46 |
+
|
| 47 |
+
# config values for the detection and recognition
|
| 48 |
+
# Detection Object
|
| 49 |
+
detection_obj = TableDetection(detection_feature_extractor, detection_model, threshold=Config['table_detection_threshold'])
|
| 50 |
+
|
| 51 |
+
# Recognition Object
|
| 52 |
+
recognition_obj = TableRecognition(recognition_feature_extractor, recognition_model, threshold=Config['table_recognition_threshold'])
|
| 53 |
+
|
| 54 |
+
table_preprocessor = TablePreprocessor()
|
| 55 |
+
textdataextractor = TextDataExtraction()
|
| 56 |
+
|
| 57 |
+
# # Fast API the service if we need to install this as a microservice
|
| 58 |
+
# app = FastAPI()
|
| 59 |
+
|
| 60 |
+
# @app.get("/health")
|
| 61 |
+
# def healthcheck():
|
| 62 |
+
# return "200"
|
| 63 |
+
|
| 64 |
+
# @app.post('/table-data-extraction')
|
| 65 |
+
# def table_data_extraction_from_image(file: UploadFile = File(...)):
|
| 66 |
+
# if not (file.filename.split('.')[-1]).lower() in ("jpg", "jpeg", "png"):
|
| 67 |
+
# return {'Image must be jpg or png format!'}
|
| 68 |
+
# print(f'#---------- Table extractor started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#')
|
| 69 |
+
# image = Image.open(file.file).convert('RGB')
|
| 70 |
+
# detection_result = detection_obj.table_detection_from_image(image)
|
| 71 |
+
# recognition_result = recognition_obj.table_recognition_from_detection(image, detection_result)
|
| 72 |
+
# preprocessed_tables = table_preprocessor.table_structure_sorting(recognition_result)
|
| 73 |
+
# exracted_table_data = textdataextractor.cell_data_extraction(image, preprocessed_tables)
|
| 74 |
+
# print(f'#---------- Table extractor ended {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#\n')
|
| 75 |
+
# return exracted_table_data
|
| 76 |
+
|
| 77 |
+
def convert_to_df(extracted_object):
|
| 78 |
+
logging.info(f'#---------- Table visualization started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#')
|
| 79 |
+
def _show_outputdf(table_list:List[List], table_number:int):
|
| 80 |
+
op_df = pd.DataFrame(table_list)
|
| 81 |
+
container.write(f'Extracted tabel: {table_number}')
|
| 82 |
+
container.dataframe(op_df)
|
| 83 |
+
container.write('\n')
|
| 84 |
+
if len(extracted_object.tables) != 0:
|
| 85 |
+
table_no = 1
|
| 86 |
+
for table in extracted_object.tables:
|
| 87 |
+
table_list = []
|
| 88 |
+
for row in table.extracted_rows:
|
| 89 |
+
row_list = []
|
| 90 |
+
for cell in row.extracted_cells:
|
| 91 |
+
row_list.append(cell.value)
|
| 92 |
+
table_list.append(row_list)
|
| 93 |
+
_show_outputdf(table_list=table_list, table_number=table_no)
|
| 94 |
+
table_no += 1
|
| 95 |
+
else:
|
| 96 |
+
container.write('No tables are predicted!!!!')
|
| 97 |
+
|
| 98 |
+
def table_data_extraction_from_image1(file):
|
| 99 |
+
logging.info(f'#---------- Table extractor started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#')
|
| 100 |
+
image = Image.open(file).convert('RGB')
|
| 101 |
+
detection_result = detection_obj.table_detection_from_image(image)
|
| 102 |
+
recognition_result = recognition_obj.table_recognition_from_detection(image, detection_result)
|
| 103 |
+
preprocessed_tables = table_preprocessor.table_structure_sorting(recognition_result)
|
| 104 |
+
exracted_table_data = textdataextractor.cell_data_extraction(image, preprocessed_tables)
|
| 105 |
+
convert_to_df(exracted_table_data)
|
| 106 |
+
|
| 107 |
+
logging.info((f'#---------- Table extractor ended {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#\n'))
|
| 108 |
+
return exracted_table_data
|
| 109 |
+
if __name__ == '__main__':
|
| 110 |
+
st.title('Table detection and recognition')
|
| 111 |
+
st.write('Table data extraction application with help of microsoft detr models.')
|
| 112 |
+
image = st.sidebar.file_uploader(label='Upload image file for data extraction', type=['png','jpg','jpeg','tif'])
|
| 113 |
+
if image:
|
| 114 |
+
result = st.sidebar.button(label='Predict', on_click=table_data_extraction_from_image1, args=(image,))
|
| 115 |
+
container = st.container()
|
| 116 |
+
container.subheader('Extracted tables :snowflake:')
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
tesseract-ocr
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
timm
|
| 3 |
+
fastapi
|
| 4 |
+
uvicorn
|
| 5 |
+
python-multipart
|
| 6 |
+
opencv-python
|
| 7 |
+
pytesseract
|
| 8 |
+
streamlit
|