Spaces:
Paused
Paused
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
| import fitz # PyMuPDF for PDF handling | |
| # Function to extract text from PDF | |
| def extract_text_from_pdf(pdf_path): | |
| doc = fitz.open(pdf_path) | |
| text = "" | |
| for page in doc: | |
| text += page.get_text() | |
| return text | |
| # Function to handle file upload and text input | |
| def analyze_document(file, prompt): | |
| # Check file type and extract text accordingly | |
| if file.name.endswith(".pdf"): | |
| text = extract_text_from_pdf(file.name) | |
| elif file.name.endswith(".txt"): | |
| text = file.read().decode("utf-8") | |
| else: | |
| return "Unsupported file format. Please upload a PDF or TXT file." | |
| # Load model and tokenizer | |
| # model_name = "Alibaba-NLP/gte-Qwen1.5-7B-instruct" | |
| model_name = "THUDM/glm-4-9b" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Generate input for the model | |
| input_text = f"Document content:\n{text}\n\nPrompt:\n{prompt}" | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| outputs = model.generate(**inputs) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Define Gradio interface | |
| file_input = gr.File(label="Upload TXT or PDF Document", file_count="single") | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your structured prompt here") | |
| output_text = gr.Textbox(label="Analysis Result") | |
| iface = gr.Interface( | |
| fn=analyze_document, | |
| inputs=[file_input, prompt_input], | |
| outputs=output_text, | |
| title="Document Analysis with GPT Model", | |
| description="Upload a TXT or PDF document and enter a prompt to get an analysis." | |
| ) | |
| # Launch the interface | |
| iface.launch() |