File size: 9,212 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
)

from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training


def train_model(
    base_model: str,
    data_path: str,
    output_dir: str,
    batch_size: int,
    num_epochs: int,
    learning_rate: float,
    cutoff_len: int,
    val_set_size: int,
    invocation_string: str,
    quantize: bool,
    eval_step: int,
    save_step: int,
    device: str,
    lora_r: int,
    lora_alpha: int,
    lora_dropout: float,
    lora_target_modules: str,
    hub_model_id: str,
    push_to_hub: bool,
):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    hf_token = os.getenv("HF_TOKEN")

    device = torch.device(device)
    print(f"Using device: {device}")

    tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token)
    tokenizer.pad_token = tokenizer.unk_token
    invocation_tokens = tokenizer.encode(invocation_string, add_special_tokens=False)

    if quantize:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            token=hf_token,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=(
                    torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
                ),
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4",
            ),
        )
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(base_model, token=hf_token)

    lora_config = LoraConfig(
        task_type="CAUSAL_LM",
        alora_invocation_tokens=invocation_tokens,
        r=lora_r,
        lora_alpha=lora_alpha,
        target_modules=(lora_target_modules.split(",") if lora_target_modules else ["q_proj", "k_proj", "v_proj"]),
        lora_dropout=lora_dropout,
        bias="none",
    )

    model = get_peft_model(model, lora_config)

    model.to(device)
    tokenizer.pad_token = tokenizer.eos_token

    dataset = load_dataset(data_path)

    def tokenize_function(examples):
        formatted_texts = [
            tokenizer.apply_chat_template(
                [
                    {"role": "user", "content": user_msg},
                    {"role": "assistant", "content": assistant_msg},
                ],
                tokenize=False,  # get plain text first
                add_generation_prompt=False,
            )
            for user_msg, assistant_msg in zip(examples["input"], examples["output"])
        ]

        # 2) Tokenize those texts
        model_inputs = tokenizer(
            formatted_texts,
            padding="max_length",
            truncation=True,
            max_length=cutoff_len,
        )

        labels = []
        for ids in model_inputs["input_ids"]:
            labels.append([(token_id if token_id != tokenizer.pad_token_id else -100) for token_id in ids])
        model_inputs["labels"] = labels

        return model_inputs

    # Tokenize the dataset and prepare for training
    tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)

    # Data collator to dynamically pad the batched examples
    data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)

    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_epochs,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        warmup_steps=100,
        weight_decay=0.01,
        logging_dir="./logs",
        logging_steps=eval_step,
        save_steps=save_step,
        save_total_limit=2,
        push_to_hub=push_to_hub,
        hub_model_id=hub_model_id,
        gradient_accumulation_steps=16,
        fp16=True,
        learning_rate=learning_rate,
        hub_token=hf_token,
    )

    torch.cuda.empty_cache()

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["test"],
        data_collator=data_collator,
    )

    trainer.train()

    if push_to_hub:
        trainer.push_to_hub(commit_message="Fine-tuned model")

    model.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)


def model_inference(model_path: str, adapter_path: str, prompt: str = None, data_path: str = None):
    """
    Simple inference with the tuned aLoRA adapter. Optionally (reuse_cache = True) demonstrates
    that the aLoRA adapter can (but does not need to) use KV cache created by the base model,
    perhaps during a prior generation turn.

    Purely for demonstration purposes. See the [paper](https://huggingface.co/papers/2504.12397)
    for realistic multiturn cache reuse examples.
    """
    if prompt is None:
        # Use first row of test data
        dataset = load_dataset(data_path)
        prompt = dataset["test"][0]["input"]
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    base_model = AutoModelForCausalLM.from_pretrained(model_path)
    alora_model = PeftModel.from_pretrained(base_model, adapter_path)
    chat = [{"role": "user", "content": prompt}]
    text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(text, return_tensors="pt").to(base_model.device)

    # Generate answer with adapter
    output_dict = alora_model.generate(**inputs, return_dict_in_generate=True, max_new_tokens=20)
    alora_outputs = output_dict.sequences

    # Print results
    print(f"Prompt: {text}")
    response = tokenizer.decode(alora_outputs[0][inputs["input_ids"].shape[1] :], skip_special_tokens=True)
    print(f"Trained adapter response: {response}")


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Fine-tune Mistral with Activated LoRA")
    parser.add_argument(
        "--base_model", type=str, default="mistralai/Mistral-7B-Instruct-v0.3", help="Base model path or name"
    )
    parser.add_argument(
        "--data_path",
        type=str,
        default="Lots-of-LoRAs/task1660_super_glue_question_generation",
        help="Dataset path or name",
    )
    parser.add_argument(
        "--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model"
    )
    parser.add_argument("--batch_size", type=int, default=2, help="Batch size")
    parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
    parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
    parser.add_argument("--cutoff_len", type=int, default=2048, help="Cutoff length for tokenization")
    parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size")
    parser.add_argument(
        "--invocation_string",
        type=str,
        default="[/INST]",
        help="String that activates the aLoRA adapter. Model dependent.",
    )
    parser.add_argument("--quantize", action="store_true", help="Use quantization")
    parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval")
    parser.add_argument("--save_step", type=int, default=100, help="Save step interval")
    parser.add_argument("--device", type=str, default="cuda:0", help="Device to use for training")
    parser.add_argument("--lora_r", type=int, default=32, help="LoRA rank")
    parser.add_argument("--lora_alpha", type=int, default=32, help="LoRA alpha")
    parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout rate")
    parser.add_argument(
        "--lora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA"
    )
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default="path/to/repo",
        help="Repository name to push the model on the Hugging Face Hub",
    )
    parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub")
    args = parser.parse_args()
    train_model(
        base_model=args.base_model,
        data_path=args.data_path,
        output_dir=args.output_dir,
        batch_size=args.batch_size,
        num_epochs=args.num_epochs,
        learning_rate=args.learning_rate,
        cutoff_len=args.cutoff_len,
        val_set_size=args.val_set_size,
        invocation_string=args.invocation_string,
        quantize=args.quantize,
        eval_step=args.eval_step,
        save_step=args.save_step,
        device=args.device,
        lora_r=args.lora_r,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        lora_target_modules=args.lora_target_modules,
        hub_model_id=args.hub_model_id,
        push_to_hub=args.push_to_hub,
    )
    print("Model trained. Running test inference.")
    model_inference(model_path=args.base_model, adapter_path=args.output_dir, data_path=args.data_path)