File size: 7,308 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# The implementation is based on "Parameter-Efficient Orthogonal Finetuning
# via Butterfly Factorization" (https://huggingface.co/papers/2311.06243) in ICLR 2024.

import glob
import os
from pathlib import Path

import cv2
import face_alignment
import numpy as np
import torch
from accelerate import Accelerator
from skimage.io import imread
from torchvision.utils import save_image
from tqdm import tqdm
from transformers import AutoTokenizer
from utils.args_loader import parse_args
from utils.dataset import make_dataset


# Determine the best available device
if torch.cuda.is_available():
    device = "cuda:0"
else:
    # TODO: xpu support in facealignment will be ready after this PR is merged:https://github.com/1adrianb/face-alignment/pull/371
    device = "cpu"

detect_model = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, device=device, flip_input=False)
# with open('./data/celebhq-text/prompt_val_blip_full.json', 'rt') as f:    # fill50k, COCO
#     for line in f:
#         val_data = json.loads(line)

end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1


def count_txt_files(directory):
    pattern = os.path.join(directory, "*.txt")
    txt_files = glob.glob(pattern)
    return len(txt_files)


def plot_kpts(image, kpts, color="g"):
    """Draw 68 key points
    Args:
        image: the input image
        kpt: (68, 3).
    """
    if color == "r":
        c = (255, 0, 0)
    elif color == "g":
        c = (0, 255, 0)
    elif color == "b":
        c = (255, 0, 0)
    image = image.copy()
    kpts = kpts.copy()
    radius = max(int(min(image.shape[0], image.shape[1]) / 200), 1)
    for i in range(kpts.shape[0]):
        st = kpts[i, :2]
        if kpts.shape[1] == 4:
            if kpts[i, 3] > 0.5:
                c = (0, 255, 0)
            else:
                c = (0, 0, 255)
        image = cv2.circle(image, (int(st[0]), int(st[1])), radius, c, radius * 2)
        if i in end_list:
            continue
        ed = kpts[i + 1, :2]
        image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius)
    return image


def generate_landmark2d(dataset, input_dir, pred_lmk_dir, gt_lmk_dir, vis=False):
    print("Generate 2d landmarks ...")
    os.makedirs(pred_lmk_dir, exist_ok=True)

    imagepath_list = sorted(glob.glob(f"{input_dir}/pred*.png"))

    for imagepath in tqdm(imagepath_list):
        name = Path(imagepath).stem
        idx = int(name.split("_")[-1])
        pred_txt_path = os.path.join(pred_lmk_dir, f"{idx}.txt")
        gt_lmk_path = os.path.join(gt_lmk_dir, f"{idx}_gt_lmk.jpg")
        gt_txt_path = os.path.join(gt_lmk_dir, f"{idx}.txt")
        gt_img_path = os.path.join(gt_lmk_dir, f"{idx}_gt_img.jpg")

        if (not os.path.exists(pred_txt_path)) or (not os.path.exists(gt_txt_path)):
            image = imread(imagepath)  # [:, :, :3]
            out = detect_model.get_landmarks(image)
            if out is None:
                continue

            pred_kpt = out[0].squeeze()
            np.savetxt(pred_txt_path, pred_kpt)

            # Your existing code for obtaining the image tensor
            gt_lmk_img = dataset[idx]["conditioning_pixel_values"]
            save_image(gt_lmk_img, gt_lmk_path)

            gt_img = (dataset[idx]["pixel_values"]) * 0.5 + 0.5
            save_image(gt_img, gt_img_path)

            gt_img = (gt_img.permute(1, 2, 0) * 255).type(torch.uint8).cpu().numpy()
            out = detect_model.get_landmarks(gt_img)
            if out is None:
                continue

            gt_kpt = out[0].squeeze()
            np.savetxt(gt_txt_path, gt_kpt)
            # gt_image = cv2.resize(cv2.imread(gt_lmk_path), (512, 512))

            if vis:
                gt_lmk_image = cv2.imread(gt_lmk_path)

                # visualize predicted landmarks
                vis_path = os.path.join(pred_lmk_dir, f"{idx}_overlay.jpg")
                image = cv2.imread(imagepath)
                image_point = plot_kpts(image, pred_kpt)
                cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1))

                # visualize gt landmarks
                vis_path = os.path.join(gt_lmk_dir, f"{idx}_overlay.jpg")
                image = cv2.imread(gt_img_path)
                image_point = plot_kpts(image, gt_kpt)
                cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1))


def landmark_comparison(val_dataset, lmk_dir, gt_lmk_dir):
    print("Calculating reprojection error")
    lmk_err = []

    pbar = tqdm(range(len(val_dataset)))
    for i in pbar:
        # line = val_dataset[i]
        # img_name = line["image"].split(".")[0]
        lmk1_path = os.path.join(gt_lmk_dir, f"{i}.txt")
        lmk1 = np.loadtxt(lmk1_path)
        lmk2_path = os.path.join(lmk_dir, f"{i}.txt")

        if not os.path.exists(lmk2_path):
            print(f"{lmk2_path} not exist")
            continue

        lmk2 = np.loadtxt(lmk2_path)
        lmk_err.append(np.mean(np.linalg.norm(lmk1 - lmk2, axis=1)))
        pbar.set_description(f"lmk_err: {np.mean(lmk_err):.5f}")

    print("Reprojection error:", np.mean(lmk_err))
    np.save(os.path.join(lmk_dir, "lmk_err.npy"), lmk_err)


def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_dir=logging_dir,
    )

    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    val_dataset = make_dataset(args, tokenizer, accelerator, "test")

    gt_lmk_dir = os.path.join(args.output_dir, "gt_lmk")
    if not os.path.exists(gt_lmk_dir):
        os.makedirs(gt_lmk_dir, exist_ok=True)

    pred_lmk_dir = os.path.join(args.output_dir, "pred_lmk")
    if not os.path.exists(pred_lmk_dir):
        os.makedirs(pred_lmk_dir, exist_ok=True)

    input_dir = os.path.join(args.output_dir, "results")

    generate_landmark2d(val_dataset, input_dir, pred_lmk_dir, gt_lmk_dir, args.vis_overlays)

    if count_txt_files(pred_lmk_dir) == len(val_dataset) and count_txt_files(gt_lmk_dir) == len(val_dataset):
        landmark_comparison(val_dataset, pred_lmk_dir, gt_lmk_dir)


if __name__ == "__main__":
    args = parse_args()
    main(args)