File size: 28,254 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
#!/usr/bin/env python
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# The implementation is based on "Parameter-Efficient Orthogonal Finetuning
# via Butterfly Factorization" (https://huggingface.co/papers/2311.06243) in ICLR 2024.

import hashlib
import itertools
import logging
import math
import os
from contextlib import nullcontext
from pathlib import Path

import datasets
import diffusers
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import Repository
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from utils.args_loader import (
    get_full_repo_name,
    import_model_class_from_model_name_or_path,
    parse_args,
)
from utils.dataset import DreamBoothDataset, PromptDataset, collate_fn
from utils.tracemalloc import TorchTracemalloc, b2mb

from peft import BOFTConfig, get_peft_model


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.16.0.dev0")

logger = get_logger(__name__)

UNET_TARGET_MODULES = ["to_q", "to_v", "to_k", "query", "value", "key", "to_out.0", "add_k_proj", "add_v_proj"]
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"]


def save_adaptor(accelerator, step, unet, text_encoder, args):
    unwarpped_unet = accelerator.unwrap_model(unet)
    unwarpped_unet.save_pretrained(
        os.path.join(args.output_dir, f"unet/{step}"), state_dict=accelerator.get_state_dict(unet)
    )
    if args.train_text_encoder:
        unwarpped_text_encoder = accelerator.unwrap_model(text_encoder)
        unwarpped_text_encoder.save_pretrained(
            os.path.join(args.output_dir, f"text_encoder/{step}"),
            state_dict=accelerator.get_state_dict(text_encoder),
        )


def main(args):
    validation_prompts = list(filter(None, args.validation_prompt[0].split(".")))

    logging_dir = Path(args.output_dir, args.logging_dir)
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_dir=accelerator_project_config,
    )
    if args.report_to == "wandb":
        import wandb

        wandb_init = {
            "wandb": {
                "name": args.wandb_run_name,
                "mode": "online",
            }
        }

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    global_seed = hash(args.wandb_run_name) % (2**32)
    set_seed(global_seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type in ["cuda", "xpu"] else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            elif torch.xpu.is_available():
                torch.xpu.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)  # noqa: F841

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    text_encoder = text_encoder_cls.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

    if args.use_boft:
        config = BOFTConfig(
            boft_block_size=args.boft_block_size,
            boft_block_num=args.boft_block_num,
            boft_n_butterfly_factor=args.boft_n_butterfly_factor,
            target_modules=UNET_TARGET_MODULES,
            boft_dropout=args.boft_dropout,
            bias=args.boft_bias,
        )
        unet = get_peft_model(unet, config, adapter_name=args.wandb_run_name)
        unet.print_trainable_parameters()

    vae.requires_grad_(False)
    unet.train()

    if args.train_text_encoder and args.use_boft:
        config = BOFTConfig(
            boft_block_size=args.boft_block_size,
            boft_block_num=args.boft_block_num,
            boft_n_butterfly_factor=args.boft_n_butterfly_factor,
            target_modules=TEXT_ENCODER_TARGET_MODULES,
            boft_dropout=args.boft_dropout,
            bias=args.boft_bias,
        )
        text_encoder = get_peft_model(text_encoder, config, adapter_name=args.wandb_run_name)
        text_encoder.print_trainable_parameters()
        text_encoder.train()
    else:
        text_encoder.requires_grad_(False)

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if accelerator.device.type == "xpu":
            logger.warn("XPU hasn't support xformers yet, ignore it.")
        elif is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        # below fails when using boft so commenting it out
        if args.train_text_encoder and not args.use_boft:
            text_encoder.gradient_checkpointing_enable()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32 and torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
    params_to_optimize = [param for param in unet.parameters() if param.requires_grad]

    if args.train_text_encoder:
        params_to_optimize += [param for param in text_encoder.parameters() if param.requires_grad]

    optimizer = optimizer_class(
        params_to_optimize,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # Download the official dreambooth dataset from the official repository: https://github.com/google/dreambooth.git
    data_path = os.path.join(os.getcwd(), "data", "dreambooth")
    if not os.path.exists(data_path):
        os.makedirs(os.path.join(os.getcwd(), "data"), exist_ok=True)
        os.system(f"git clone https://github.com/google/dreambooth.git '{data_path}'")

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=args.num_dataloader_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move vae and text_encoder to device and cast to weight_dtype
    vae.to(accelerator.device, dtype=weight_dtype)
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers(args.wandb_project_name, config=vars(args), init_kwargs=wandb_init)

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    if args.train_text_encoder:
        text_encoder.train()

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()

        with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc:
            for step, batch in enumerate(train_dataloader):
                # Skip steps until we reach the resumed step
                if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                    if step % args.gradient_accumulation_steps == 0:
                        progress_bar.update(1)
                        if args.report_to == "wandb":
                            accelerator.print(progress_bar)
                    continue

                with accelerator.accumulate(unet):
                    # Convert images to latent space
                    latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    latents = latents * vae.config.scaling_factor

                    # Sample noise that we'll add to the latents
                    noise = torch.randn_like(latents)
                    bsz = latents.shape[0]
                    # Sample a random timestep for each image
                    timesteps = torch.randint(
                        0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
                    )
                    timesteps = timesteps.long()

                    # Add noise to the latents according to the noise magnitude at each timestep
                    # (this is the forward diffusion process)
                    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                    # Get the text embedding for conditioning
                    encoder_hidden_states = text_encoder(batch["input_ids"])[0]

                    # Predict the noise residual
                    model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                    # Get the target for loss depending on the prediction type
                    if noise_scheduler.config.prediction_type == "epsilon":
                        target = noise
                    elif noise_scheduler.config.prediction_type == "v_prediction":
                        target = noise_scheduler.get_velocity(latents, noise, timesteps)
                    else:
                        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                    if args.with_prior_preservation:
                        # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                        model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                        target, target_prior = torch.chunk(target, 2, dim=0)

                        # Compute instance loss
                        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                        # Compute prior loss
                        prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                        # Add the prior loss to the instance loss.
                        loss = loss + args.prior_loss_weight * prior_loss
                    else:
                        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                    accelerator.backward(loss)

                    if accelerator.sync_gradients:
                        params_to_clip = (
                            itertools.chain(unet.parameters(), text_encoder.parameters())
                            if args.train_text_encoder
                            else unet.parameters()
                        )
                        accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)

                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:
                    progress_bar.update(1)
                    if args.report_to == "wandb":
                        accelerator.print(progress_bar)
                    global_step += 1

                if global_step % args.checkpointing_steps == 0 and global_step != 0:
                    if accelerator.is_main_process:
                        save_adaptor(accelerator, global_step, unet, text_encoder, args)

                logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
                progress_bar.set_postfix(**logs)
                accelerator.log(logs, step=global_step)

                if (
                    args.validation_prompt is not None
                    and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0
                    and global_step > 10
                ):
                    unet.eval()

                    logger.info(
                        f"Running validation... \n Generating {len(validation_prompts)} images with prompt:"
                        f" {validation_prompts[0]}, ......"
                    )
                    # create pipeline
                    pipeline = DiffusionPipeline.from_pretrained(
                        args.pretrained_model_name_or_path,
                        safety_checker=None,
                        revision=args.revision,
                    )
                    # set `keep_fp32_wrapper` to True because we do not want to remove
                    # mixed precision hooks while we are still training
                    pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
                    pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
                    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
                    pipeline = pipeline.to(accelerator.device)
                    pipeline.set_progress_bar_config(disable=True)

                    # run inference
                    if args.seed is not None:
                        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
                    else:
                        generator = None
                    # images = []
                    # for _ in range(args.num_validation_images):
                    #     image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                    #     images.append(image)

                    images = []
                    val_img_dir = os.path.join(
                        args.output_dir,
                        f"validation/{global_step}",
                        args.wandb_run_name,
                    )
                    os.makedirs(val_img_dir, exist_ok=True)

                    for val_promot in validation_prompts:
                        image = pipeline(val_promot, num_inference_steps=50, generator=generator).images[0]
                        image.save(os.path.join(val_img_dir, f"{'_'.join(val_promot.split(' '))}.png"[1:]))
                        images.append(image)

                    for tracker in accelerator.trackers:
                        if tracker.name == "tensorboard":
                            np_images = np.stack([np.asarray(img) for img in images])
                            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                        if tracker.name == "wandb":
                            import wandb

                            tracker.log(
                                {
                                    "validation": [
                                        wandb.Image(image, caption=f"{i}: {validation_prompts[i]}")
                                        for i, image in enumerate(images)
                                    ]
                                }
                            )

                    del pipeline
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
                    elif torch.xpu.is_available():
                        torch.xpu.empty_cache()

                if global_step >= args.max_train_steps:
                    break

        # Printing the accelerator memory usage details such as allocated memory, peak memory, and total memory usage
        if not args.no_tracemalloc:
            accelerator.print(
                f"{accelerator.device.type.upper()} Memory before entering the train : {b2mb(tracemalloc.begin)}"
            )
            accelerator.print(
                f"{accelerator.device.type.upper()} Memory consumed at the end of the train (end-begin): {tracemalloc.used}"
            )
            accelerator.print(
                f"{accelerator.device.type.upper()} Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}"
            )
            accelerator.print(
                f"{accelerator.device.type.upper()} Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}"
            )

            accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}")
            accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}")
            accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}")
            accelerator.print(
                f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}"
            )

    if args.push_to_hub:
        repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)