File size: 8,059 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import Optional

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
)

from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from peft.optimizers import create_lorafa_optimizer


def train_model(
    base_model_name_or_path: str,
    dataset_name_or_path: str,
    output_dir: str,
    batch_size: int,
    num_epochs: int,
    lr: float,
    cutoff_len: int,
    quantize: bool,
    eval_step: int,
    save_step: int,
    lora_rank: int,
    lora_alpha: int,
    lora_dropout: float,
    lora_target_modules: Optional[str],
    lorafa: bool,
):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    is_bf16_supported = False
    device_map = "cpu"
    if torch.cuda.is_available():
        is_bf16_supported = torch.cuda.is_bf16_supported()
        device_map = "cuda"
    elif torch.xpu.is_available():
        is_bf16_supported = torch.xpu.is_bf16_supported()
        device_map = "xpu"
    compute_dtype = torch.bfloat16 if is_bf16_supported else torch.float16

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)

    # load model
    if quantize:
        model = AutoModelForCausalLM.from_pretrained(
            base_model_name_or_path,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=compute_dtype,
                bnb_4bit_use_double_quant=False,
                bnb_4bit_quant_type="nf4",
            ),
            torch_dtype=compute_dtype,
            device_map=device_map,
        )
        # setup for quantized training
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(
            base_model_name_or_path, torch_dtype=compute_dtype, device_map=device_map
        )

    # LoRA config for the PEFT model
    if lora_target_modules is not None:
        if lora_target_modules == "all-linear":
            target_modules = "all-linear"
        else:
            target_modules = lora_target_modules.split(",")
    else:
        target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]

    lora_config = LoraConfig(
        r=lora_rank,
        lora_alpha=lora_alpha,
        target_modules=target_modules,
        lora_dropout=lora_dropout,
        bias="none",
    )

    # get the peft model with LoRA config
    model = get_peft_model(model, lora_config)

    tokenizer.pad_token = tokenizer.eos_token

    # Load the dataset
    dataset = load_dataset(dataset_name_or_path)

    def tokenize_function(examples):
        inputs = tokenizer(examples["query"], padding="max_length", truncation=True, max_length=cutoff_len)
        outputs = tokenizer(examples["response"], padding="max_length", truncation=True, max_length=cutoff_len)
        inputs["labels"] = outputs["input_ids"].copy()
        return inputs

    # Tokenize the dataset and prepare for training
    tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)
    dataset = tokenized_datasets["train"].train_test_split(test_size=0.1, shuffle=True, seed=42)
    train_dataset = dataset["train"]
    eval_dataset = dataset["test"]

    # Data collator to dynamically pad the batched examples
    data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)

    # Define training arguments
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_epochs,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        warmup_steps=100,
        weight_decay=0.01,
        logging_dir="./logs",
        logging_steps=eval_step,
        save_steps=save_step,
        save_total_limit=2,
        gradient_accumulation_steps=1,
        bf16=True if compute_dtype == torch.bfloat16 else False,
        fp16=True if compute_dtype == torch.float16 else False,
        learning_rate=lr,
    )

    # Here we initialize the LoRA-FA Optimizer
    # After this, all adapter A will be fixed, only adapter B will be trainable
    if lorafa:
        optimizer = create_lorafa_optimizer(
            model=model, r=lora_rank, lora_alpha=lora_alpha, lr=lr, weight_decay=training_args.weight_decay
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            data_collator=data_collator,
            optimizers=(optimizer, None),
        )
    else:
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            data_collator=data_collator,
        )

    # Start model training
    trainer.train()

    # Save the model and tokenizer locally
    model.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Fine-tune Meta-Llama-3-8B-Instruct with LoRA-FA and PEFT")
    parser.add_argument(
        "--base_model_name_or_path",
        type=str,
        default="meta-llama/Meta-Llama-3-8B-Instruct",
        help="Base model name or path",
    )
    parser.add_argument(
        "--dataset_name_or_path", type=str, default="meta-math/MetaMathQA-40K", help="Dataset name or path"
    )
    parser.add_argument("--output_dir", type=str, help="Output directory for the fine-tuned model")
    parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
    parser.add_argument("--num_epochs", type=int, default=3, help="Number of training epochs")
    parser.add_argument("--lr", type=float, default=7e-5, help="Learning rate")
    parser.add_argument("--cutoff_len", type=int, default=1024, help="Cutoff length for tokenization")
    parser.add_argument("--quantize", action="store_true", help="Use quantization")
    parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval")
    parser.add_argument("--save_step", type=int, default=100, help="Save step interval")
    parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank")
    parser.add_argument("--lora_alpha", type=int, default=32, help="LoRA alpha")
    parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout rate")
    parser.add_argument(
        "--lora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA"
    )
    parser.add_argument("--lorafa", action="store_true", help="Use LoRA-FA Optimizer")

    args = parser.parse_args()

    train_model(
        base_model_name_or_path=args.base_model_name_or_path,
        dataset_name_or_path=args.dataset_name_or_path,
        output_dir=args.output_dir,
        batch_size=args.batch_size,
        num_epochs=args.num_epochs,
        lr=args.lr,
        cutoff_len=args.cutoff_len,
        quantize=args.quantize,
        eval_step=args.eval_step,
        save_step=args.save_step,
        lora_rank=args.lora_rank,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        lora_target_modules=args.lora_target_modules,
        lorafa=args.lorafa,
    )