File size: 7,138 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from typing import Optional

import torch
import transformers
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed

from peft import (
    LoraConfig,
    get_peft_model,
)


def train(
    base_model: str = "path/to/model",
    data_path: str = "yahma/alpaca-cleaned",
    output_dir: str = "olora",
    batch_size: int = 16,
    num_epochs: int = 1,
    learning_rate: float = 3e-4,
    cutoff_len: int = 256,
    val_set_size: int = 16,
    quantize: bool = False,
    eval_step: int = 100,
    save_step: int = 100,
    device_map: str = "auto",
    lora_r: int = 32,
    lora_alpha: int = 16,
    lora_dropout: float = 0.05,
    lora_target_modules: list[str] = None,
    torch_dtype: str = "float16",
    init_lora_weights="olora",
    seed: Optional[int] = None,
):
    # Set device_map to the right place when enabling DDP.
    world_size = int(os.environ.get("WORLD_SIZE", 0)) or int(os.environ.get("PMI_SIZE", 0))
    if world_size > 1 and device_map != "cpu":
        from accelerate import Accelerator

        device_map = {"": Accelerator().process_index}
    # Set seed
    if seed is not None:
        set_seed(seed)
    model_kwargs = {"torch_dtype": getattr(torch, torch_dtype), "device_map": device_map}
    if quantize:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    model = AutoModelForCausalLM.from_pretrained(base_model, **model_kwargs)

    tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
    # For some tokenizer with no pad token like llama
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    def tokenize(prompt, add_eos_token=True):
        result = tokenizer(
            prompt,
            truncation=True,
            max_length=cutoff_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != tokenizer.eos_token_id
            and len(result["input_ids"]) < cutoff_len
            and add_eos_token
        ):
            result["input_ids"].append(tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()

        return result

    def generate_and_tokenize_prompt(example):
        full_prompt = generate_prompt(example)
        tokenized_full_prompt = tokenize(full_prompt)
        return tokenized_full_prompt

    config = LoraConfig(
        r=lora_r,
        lora_alpha=lora_alpha,
        target_modules=lora_target_modules,
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
        init_lora_weights=init_lora_weights,
    )
    model = get_peft_model(model, config)

    data = load_dataset(data_path)

    train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
    train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
    val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=batch_size,
            warmup_steps=100,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            logging_steps=100,
            optim="adamw_torch",
            eval_strategy="steps",
            save_strategy="steps",
            eval_steps=eval_step,
            save_steps=save_step,
            output_dir=output_dir,
            save_total_limit=3,
            load_best_model_at_end=True,
            ddp_find_unused_parameters=False if world_size > 1 else None,
        ),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
    )
    trainer.train()
    model.save_pretrained(output_dir)


def generate_prompt(example):
    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
            ### Instruction:
            {example["instruction"]}
            ### Response:
            {example["output"]}"""


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--base_model", type=str, default="path/to/model")
    parser.add_argument("--data_path", type=str, default="yahma/alpaca-cleaned")
    parser.add_argument("--output_dir", type=str, default="olora")
    parser.add_argument("--batch_size", type=int, default=16)
    parser.add_argument("--num_epochs", type=int, default=1)
    parser.add_argument("--learning_rate", type=float, default=3e-4)
    parser.add_argument("--cutoff_len", type=int, default=256)
    parser.add_argument("--val_set_size", type=int, default=16)
    parser.add_argument("--quantize", action="store_true")
    parser.add_argument("--eval_step", type=int, default=100)
    parser.add_argument("--save_step", type=int, default=100)
    parser.add_argument("--device_map", type=str, default="auto")
    parser.add_argument("--lora_r", type=int, default=32)
    parser.add_argument("--lora_alpha", type=int, default=16)
    parser.add_argument("--lora_dropout", type=float, default=0.05)
    parser.add_argument("--lora_target_modules", type=str, default=None)
    parser.add_argument("--torch_dtype", type=str, default="float16")
    parser.add_argument("--init_lora_weights", type=str, default="olora")
    parser.add_argument("--seed", type=int, default=None)

    args = parser.parse_args()

    train(
        base_model=args.base_model,
        data_path=args.data_path,
        output_dir=args.output_dir,
        batch_size=args.batch_size,
        num_epochs=args.num_epochs,
        learning_rate=args.learning_rate,
        cutoff_len=args.cutoff_len,
        val_set_size=args.val_set_size,
        quantize=args.quantize,
        eval_step=args.eval_step,
        save_step=args.save_step,
        device_map=args.device_map,
        lora_r=args.lora_r,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        lora_target_modules=args.lora_target_modules,
        torch_dtype=args.torch_dtype,
        init_lora_weights=args.init_lora_weights,
        seed=args.seed,
    )