File size: 8,760 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# This script is based on examples/dora_finetuning/dora_finetuning.py
import os

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
)

from peft import LoraConfig, RandLoraConfig, get_peft_model, prepare_model_for_kbit_training


def train_model(
    base_model: str,
    data_path: str,
    output_dir: str,
    batch_size: int,
    num_epochs: int,
    learning_rate: float,
    cutoff_len: int,
    val_set_size: int,
    use_lora: bool,
    quantize: bool,
    eval_step: int,
    save_step: int,
    device: str,
    rank: int,
    randlora_alpha: int,
    randlora_dropout: float,
    randlora_target_modules: str,
    hub_model_id: str,
    push_to_hub: bool,
    sparse: bool,
    very_sparse: bool,
):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    hf_token = os.getenv("HF_TOKEN")

    # Setup device
    device = torch.device(device)
    print(f"Using device: {device}")

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token)

    # Compute type
    device_type = device.type
    device_module = getattr(torch, device_type, torch.cuda)
    bf16_suppotrted = device_module.is_available() and device_module.is_bf16_supported()
    torch_dtype = torch.bfloat16 if bf16_suppotrted else torch.float16

    # QRandLora (quantized randlora): IF YOU WANNA QUANTIZE THE MODEL
    if quantize:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            token=hf_token,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.bfloat16 if bf16_suppotrted else torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4",
            ),
            torch_dtype=torch_dtype,
        )
        # setup for quantized training
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            torch_dtype=torch_dtype,
            token=hf_token,
        )
    # LoRa config for the PEFT model
    if use_lora:
        peft_config = LoraConfig(
            r=rank,  # Rank of matrix
            lora_alpha=randlora_alpha,
            target_modules=(randlora_target_modules.split(",") if randlora_target_modules else ["k_proj", "v_proj"]),
            lora_dropout=randlora_dropout,
            bias="none",
        )
    else:
        peft_config = RandLoraConfig(
            r=rank,  # Rank of random bases
            randlora_alpha=randlora_alpha,
            target_modules=(randlora_target_modules.split(",") if randlora_target_modules else ["k_proj", "v_proj"]),
            randlora_dropout=randlora_dropout,
            bias="none",
            sparse=sparse,
            very_sparse=very_sparse,
        )

    # get the peft model with RandLora config
    model = get_peft_model(model, peft_config)

    model.to(device)  # MODEL TO ACCELERATOR
    tokenizer.pad_token = tokenizer.eos_token

    # Load the dataset
    dataset = load_dataset(data_path)

    def tokenize_function(examples):
        inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len)
        inputs["labels"] = inputs["input_ids"].copy()  # setting labels for a language modeling task
        return inputs

    # Tokenize the dataset and prepare for training
    tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)

    # Data collator to dynamically pad the batched examples
    data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)

    # Compute the total amount of training step for warmup
    max_steps = int((len(dataset) // batch_size) * num_epochs)

    # Define training arguments
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_epochs,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        warmup_steps=int(max_steps * 0.1),  # 10% of total trainig steps
        weight_decay=0.01,
        logging_dir="./logs",
        logging_steps=eval_step,
        save_steps=save_step,
        save_total_limit=2,
        push_to_hub=push_to_hub,
        hub_model_id=hub_model_id,
        gradient_accumulation_steps=16
        // batch_size,  # Maintaining a minimum batch size of 16 post accumulation is recommended to ensure good performance
        learning_rate=learning_rate,
        hub_token=hf_token,
        label_names=["labels"],
    )

    # Clear accelerator cache to free memory
    device_module.empty_cache()

    # Initialize the Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["test"],
        data_collator=data_collator,
    )

    # Start model training
    trainer.train()

    # Save and push the trained model and tokenizer
    if push_to_hub:
        # Push the main model to the hub
        trainer.push_to_hub(commit_message="Fine-tuned model")

    # Save the model and tokenizer locally
    model.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Fine-tune LLaMA with DoRA and PEFT")
    parser.add_argument("--base_model", type=str, default="huggyllama/llama-7b", help="Base model path or name")
    parser.add_argument(
        "--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name"
    )
    parser.add_argument(
        "--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model"
    )
    parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
    parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
    parser.add_argument("--learning_rate", type=float, default=3e-4, help="Learning rate")
    parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization")
    parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size")
    parser.add_argument("--use_lora", action="store_true", help="Apply Lora instead of RandLora")
    parser.add_argument("--quantize", action="store_true", help="Use quantization")
    parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval")
    parser.add_argument("--save_step", type=int, default=100, help="Save step interval")
    parser.add_argument("--device", type=str, default="auto", help="Device to use for training")
    parser.add_argument("--rank", type=int, default=32, help="RandLora basis rank")
    parser.add_argument("--randlora_alpha", type=int, default=640, help="RandLora alpha")
    parser.add_argument("--randlora_dropout", type=float, default=0.05, help="RandLora dropout rate")
    parser.add_argument(
        "--randlora_target_modules", type=str, default=None, help="Comma-separated list of target modules for RandLora"
    )
    parser.add_argument("--sparse", action="store_true", help="Use sparse matrix multiplication")
    parser.add_argument("--very_sparse", action="store_true", help="Use very sparse matrix multiplication")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default="path/to/repo",
        help="Repository name to push the model on the Hugging Face Hub",
    )
    parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub")
    args = parser.parse_args()

    if args.device == "auto":
        args.device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"

    train_model(
        base_model=args.base_model,
        data_path=args.data_path,
        output_dir=args.output_dir,
        batch_size=args.batch_size,
        num_epochs=args.num_epochs,
        learning_rate=args.learning_rate,
        cutoff_len=args.cutoff_len,
        val_set_size=args.val_set_size,
        use_lora=args.use_lora,
        quantize=args.quantize,
        eval_step=args.eval_step,
        save_step=args.save_step,
        device=args.device,
        rank=args.rank,
        randlora_alpha=args.randlora_alpha,
        randlora_dropout=args.randlora_dropout,
        randlora_target_modules=args.randlora_target_modules,
        hub_model_id=args.hub_model_id,
        push_to_hub=args.push_to_hub,
        sparse=args.sparse,
        very_sparse=args.very_sparse,
    )