File size: 26,315 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import pickle
import tempfile
import warnings

import pytest

from peft import (
    AdaLoraConfig,
    AdaptionPromptConfig,
    BOFTConfig,
    BoneConfig,
    C3AConfig,
    FourierFTConfig,
    HRAConfig,
    IA3Config,
    LNTuningConfig,
    LoHaConfig,
    LoKrConfig,
    LoraConfig,
    MissConfig,
    MultitaskPromptTuningConfig,
    OFTConfig,
    PeftConfig,
    PeftType,
    PolyConfig,
    PrefixTuningConfig,
    PromptEncoder,
    PromptEncoderConfig,
    PromptTuningConfig,
    RoadConfig,
    ShiraConfig,
    TaskType,
    TrainableTokensConfig,
    VBLoRAConfig,
    VeraConfig,
    XLoraConfig,
)


PEFT_MODELS_TO_TEST = [("peft-internal-testing/tiny-opt-lora-revision", "test")]

# Config classes and their mandatory parameters
ALL_CONFIG_CLASSES = (
    (AdaLoraConfig, {"total_step": 1}),
    (AdaptionPromptConfig, {}),
    (BOFTConfig, {}),
    (BoneConfig, {}),
    (C3AConfig, {}),
    (FourierFTConfig, {}),
    (HRAConfig, {}),
    (IA3Config, {}),
    (LNTuningConfig, {}),
    (LoHaConfig, {}),
    (LoKrConfig, {}),
    (LoraConfig, {}),
    (MissConfig, {}),
    (MultitaskPromptTuningConfig, {}),
    (PolyConfig, {}),
    (PrefixTuningConfig, {}),
    (PromptEncoderConfig, {}),
    (PromptTuningConfig, {}),
    (RoadConfig, {}),
    (ShiraConfig, {}),
    (TrainableTokensConfig, {}),
    (VeraConfig, {}),
    (VBLoRAConfig, {}),
    (XLoraConfig, {"hidden_size": 32, "adapters": {}}),
)


class TestPeftConfig:
    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_methods(self, config_class, mandatory_kwargs):
        r"""
        Test if all configs have the expected methods. Here we test
        - to_dict
        - save_pretrained
        - from_pretrained
        - from_json_file
        """
        # test if all configs have the expected methods
        config = config_class(**mandatory_kwargs)
        assert hasattr(config, "to_dict")
        assert hasattr(config, "save_pretrained")
        assert hasattr(config, "from_pretrained")
        assert hasattr(config, "from_json_file")

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    @pytest.mark.parametrize("valid_task_type", list(TaskType) + [None])
    def test_valid_task_type(self, config_class, mandatory_kwargs, valid_task_type):
        r"""
        Test if all configs work correctly for all valid task types
        """
        config_class(task_type=valid_task_type, **mandatory_kwargs)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_invalid_task_type(self, config_class, mandatory_kwargs):
        r"""
        Test if all configs correctly raise the defined error message for invalid task types.
        """
        invalid_task_type = "invalid-task-type"
        with pytest.raises(
            ValueError,
            match=f"Invalid task type: '{invalid_task_type}'. Must be one of the following task types: {', '.join(TaskType)}.",
        ):
            config_class(task_type=invalid_task_type, **mandatory_kwargs)

    def test_from_peft_type(self):
        r"""
        Test if the config is correctly loaded using:
        - from_peft_type
        """
        from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING

        for peft_type in PeftType:
            expected_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type]
            mandatory_config_kwargs = {}

            if expected_cls == AdaLoraConfig:
                mandatory_config_kwargs = {"total_step": 1}

            config = PeftConfig.from_peft_type(peft_type=peft_type, **mandatory_config_kwargs)
            assert type(config) is expected_cls

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_pretrained(self, config_class, mandatory_kwargs):
        r"""
        Test if the config is correctly loaded using:
        - from_pretrained
        """
        for model_name, revision in PEFT_MODELS_TO_TEST:
            # Test we can load config from delta
            config_class.from_pretrained(model_name, revision=revision)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_save_pretrained(self, config_class, mandatory_kwargs):
        r"""
        Test if the config is correctly saved and loaded using
        - save_pretrained
        """
        config = config_class(**mandatory_kwargs)
        with tempfile.TemporaryDirectory() as tmp_dirname:
            config.save_pretrained(tmp_dirname)

            config_from_pretrained = config_class.from_pretrained(tmp_dirname)
            assert config.to_dict() == config_from_pretrained.to_dict()

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_json_file(self, config_class, mandatory_kwargs):
        config = config_class(**mandatory_kwargs)
        with tempfile.TemporaryDirectory() as tmp_dirname:
            config.save_pretrained(tmp_dirname)

            config_path = os.path.join(tmp_dirname, "adapter_config.json")
            config_from_json = config_class.from_json_file(config_path)
            assert config.to_dict() == config_from_json

            # Also test with a runtime_config entry -- they should be ignored, even if they
            # were accidentally saved to disk
            config_from_json["runtime_config"] = {"ephemeral_gpu_offload": True}
            json.dump(config_from_json, open(config_path, "w"))

            config_from_json = config_class.from_json_file(config_path)
            assert config.to_dict() == config_from_json

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_to_dict(self, config_class, mandatory_kwargs):
        r"""
        Test if the config can be correctly converted to a dict using:
        - to_dict
        """
        config = config_class(**mandatory_kwargs)
        assert isinstance(config.to_dict(), dict)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_pretrained_cache_dir(self, config_class, mandatory_kwargs):
        r"""
        Test if the config is correctly loaded with extra kwargs
        """
        with tempfile.TemporaryDirectory() as tmp_dirname:
            for model_name, revision in PEFT_MODELS_TO_TEST:
                # Test we can load config from delta
                config_class.from_pretrained(model_name, revision=revision, cache_dir=tmp_dirname)

    def test_from_pretrained_cache_dir_remote(self):
        r"""
        Test if the config is correctly loaded with a checkpoint from the hub
        """
        with tempfile.TemporaryDirectory() as tmp_dirname:
            PeftConfig.from_pretrained("ybelkada/test-st-lora", cache_dir=tmp_dirname)
            assert "models--ybelkada--test-st-lora" in os.listdir(tmp_dirname)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_save_pretrained_with_runtime_config(self, config_class, mandatory_kwargs):
        r"""
        Test if the config correctly removes runtime config when saving
        """
        with tempfile.TemporaryDirectory() as tmp_dirname:
            for model_name, revision in PEFT_MODELS_TO_TEST:
                cfg = config_class.from_pretrained(model_name, revision=revision)
                # NOTE: cfg is always a LoraConfig here, because the configuration of the loaded model was a LoRA.
                # Hence we can expect a runtime_config to exist regardless of config_class.
                cfg.runtime_config.ephemeral_gpu_offload = True
                cfg.save_pretrained(tmp_dirname)
                cfg = config_class.from_pretrained(tmp_dirname)
                assert not cfg.runtime_config.ephemeral_gpu_offload

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_set_attributes(self, config_class, mandatory_kwargs):
        # manually set attributes and check if they are correctly written
        config = config_class(peft_type="test", **mandatory_kwargs)

        # save pretrained
        with tempfile.TemporaryDirectory() as tmp_dirname:
            config.save_pretrained(tmp_dirname)

            config_from_pretrained = config_class.from_pretrained(tmp_dirname)
            assert config.to_dict() == config_from_pretrained.to_dict()

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_config_copy(self, config_class, mandatory_kwargs):
        # see https://github.com/huggingface/peft/issues/424
        config = config_class(**mandatory_kwargs)
        copied = copy.copy(config)
        assert config.to_dict() == copied.to_dict()

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_config_deepcopy(self, config_class, mandatory_kwargs):
        # see https://github.com/huggingface/peft/issues/424
        config = config_class(**mandatory_kwargs)
        copied = copy.deepcopy(config)
        assert config.to_dict() == copied.to_dict()

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_config_pickle_roundtrip(self, config_class, mandatory_kwargs):
        # see https://github.com/huggingface/peft/issues/424
        config = config_class(**mandatory_kwargs)
        copied = pickle.loads(pickle.dumps(config))
        assert config.to_dict() == copied.to_dict()

    def test_prompt_encoder_warning_num_layers(self):
        # This test checks that if a prompt encoder config is created with an argument that is ignored, there should be
        # warning. However, there should be no warning if the default value is used.
        kwargs = {
            "num_virtual_tokens": 20,
            "num_transformer_submodules": 1,
            "token_dim": 768,
            "encoder_hidden_size": 768,
        }

        # there should be no warning with just default argument for encoder_num_layer
        config = PromptEncoderConfig(**kwargs)
        with warnings.catch_warnings():
            PromptEncoder(config)

        # when changing encoder_num_layer, there should be a warning for MLP since that value is not used
        config = PromptEncoderConfig(encoder_num_layers=123, **kwargs)
        with pytest.warns(UserWarning) as record:
            PromptEncoder(config)
        expected_msg = "for MLP, the argument `encoder_num_layers` is ignored. Exactly 2 MLP layers are used."
        assert str(record.list[0].message) == expected_msg

    @pytest.mark.parametrize(
        "config_class", [LoHaConfig, LoraConfig, IA3Config, OFTConfig, BOFTConfig, HRAConfig, VBLoRAConfig]
    )
    def test_save_pretrained_with_target_modules(self, config_class):
        # See #1041, #1045
        config = config_class(target_modules=["a", "list"])
        with tempfile.TemporaryDirectory() as tmp_dirname:
            config.save_pretrained(tmp_dirname)

            config_from_pretrained = config_class.from_pretrained(tmp_dirname)
            assert config.to_dict() == config_from_pretrained.to_dict()
            # explicit test that target_modules should be converted to set
            assert isinstance(config_from_pretrained.target_modules, set)

    def test_regex_with_layer_indexing_lora(self):
        # This test checks that an error is raised if `target_modules` is a regex expression and `layers_to_transform` or
        # `layers_pattern` are not None

        invalid_config1 = {"target_modules": ".*foo", "layers_to_transform": [0]}
        invalid_config2 = {"target_modules": ".*foo", "layers_pattern": ["bar"]}

        valid_config = {"target_modules": ["foo"], "layers_pattern": ["bar"], "layers_to_transform": [0]}

        with pytest.raises(ValueError, match="`layers_to_transform` cannot be used when `target_modules` is a str."):
            LoraConfig(**invalid_config1)

        with pytest.raises(ValueError, match="`layers_pattern` cannot be used when `target_modules` is a str."):
            LoraConfig(**invalid_config2)

        # should run without errors
        LoraConfig(**valid_config)

    def test_ia3_is_feedforward_subset_invalid_config(self):
        # This test checks that the IA3 config raises a value error if the feedforward_modules argument
        # is not a subset of the target_modules argument

        # an example invalid config
        invalid_config = {"target_modules": ["k", "v"], "feedforward_modules": ["q"]}

        with pytest.raises(ValueError, match="^`feedforward_modules` should be a subset of `target_modules`$"):
            IA3Config(**invalid_config)

    def test_ia3_is_feedforward_subset_valid_config(self):
        # This test checks that the IA3 config is created without errors with valid arguments.
        # feedforward_modules should be a subset of target_modules if both are lists

        # an example valid config with regex expressions.
        valid_config_regex_exp = {
            "target_modules": ".*.(SelfAttention|EncDecAttention|DenseReluDense).*(q|v|wo)$",
            "feedforward_modules": ".*.DenseReluDense.wo$",
        }
        # an example valid config with module lists.
        valid_config_list = {"target_modules": ["k", "v", "wo"], "feedforward_modules": ["wo"]}

        # should run without errors
        IA3Config(**valid_config_regex_exp)
        IA3Config(**valid_config_list)

    def test_adalora_config_r_warning(self):
        # This test checks that a warning is raised when r is set other than default in AdaLoraConfig
        # No warning should be raised when initializing AdaLoraConfig with default values.
        kwargs = {"peft_type": "ADALORA", "task_type": "SEQ_2_SEQ_LM", "init_r": 12, "lora_alpha": 32, "total_step": 1}
        # Test that no warning is raised with default initialization
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            try:
                AdaLoraConfig(**kwargs)
            except Warning:
                pytest.fail("AdaLoraConfig raised a warning with default initialization.")
        # Test that a warning is raised when r != 8 in AdaLoraConfig
        with pytest.warns(UserWarning, match="Note that `r` is not used in AdaLora and will be ignored."):
            AdaLoraConfig(r=10, total_step=1)

    def test_adalora_config_correct_timing_still_works(self):
        pass

    @pytest.mark.parametrize(
        "timing_kwargs",
        [
            {"total_step": 100, "tinit": 0, "tfinal": 0},
            {"total_step": 100, "tinit": 10, "tfinal": 10},
            {"total_step": 100, "tinit": 79, "tfinal": 20},
            {"total_step": 100, "tinit": 80, "tfinal": 19},
        ],
    )
    def test_adalora_config_valid_timing_works(self, timing_kwargs):
        # Make sure that passing correct timing values is not prevented by faulty config checks.
        AdaLoraConfig(**timing_kwargs)  # does not raise

    def test_adalora_config_invalid_total_step_raises(self):
        with pytest.raises(ValueError) as e:
            AdaLoraConfig(total_step=None)
        assert "AdaLoRA does not work when `total_step` is None, supply a value > 0." in str(e)

    @pytest.mark.parametrize(
        "timing_kwargs",
        [
            {"total_step": 100, "tinit": 20, "tfinal": 80},
            {"total_step": 100, "tinit": 80, "tfinal": 20},
            {"total_step": 10, "tinit": 20, "tfinal": 0},
            {"total_step": 10, "tinit": 0, "tfinal": 10},
            {"total_step": 10, "tinit": 10, "tfinal": 0},
            {"total_step": 10, "tinit": 20, "tfinal": 0},
            {"total_step": 10, "tinit": 20, "tfinal": 20},
            {"total_step": 10, "tinit": 0, "tfinal": 20},
        ],
    )
    def test_adalora_config_timing_bounds_error(self, timing_kwargs):
        # Check if the user supplied timing values that will certainly fail because it breaks
        # AdaLoRA assumptions.
        with pytest.raises(ValueError) as e:
            AdaLoraConfig(**timing_kwargs)

        assert "The supplied schedule values don't allow for a budgeting phase" in str(e)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_pretrained_forward_compatible(self, config_class, mandatory_kwargs, tmp_path, recwarn):
        """
        Make it possible to load configs that contain unknown keys by ignoring them.

        The idea is to make PEFT configs forward-compatible with future versions of the library.
        """
        config = config_class(**mandatory_kwargs)
        config.save_pretrained(tmp_path)
        # add a spurious key to the config
        with open(tmp_path / "adapter_config.json") as f:
            config_dict = json.load(f)
        config_dict["foobar"] = "baz"
        config_dict["spam"] = 123
        with open(tmp_path / "adapter_config.json", "w") as f:
            json.dump(config_dict, f)

        msg = f"Unexpected keyword arguments ['foobar', 'spam'] for class {config_class.__name__}, these are ignored."
        config_from_pretrained = config_class.from_pretrained(tmp_path)

        expected_num_warnings = 1
        # TODO: remove once Bone is removed in v0.19.0
        if config_class == BoneConfig:
            expected_num_warnings = 2  # Bone has 1 more warning about it being deprecated

        assert len(recwarn) == expected_num_warnings
        assert recwarn.list[-1].message.args[0].startswith(msg)
        assert "foo" not in config_from_pretrained.to_dict()
        assert "spam" not in config_from_pretrained.to_dict()
        assert config.to_dict() == config_from_pretrained.to_dict()
        assert isinstance(config_from_pretrained, config_class)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_pretrained_forward_compatible_load_from_peft_config(
        self, config_class, mandatory_kwargs, tmp_path, recwarn
    ):
        """Exact same test as before, but instead of using LoraConfig.from_pretrained, AdaLoraconfig.from_pretrained,
        etc. use PeftConfig.from_pretrained. This covers a previously existing bug where only the known arguments from
        PeftConfig would be used instead of the more specific config (which is known thanks to the peft_type
        attribute).

        """
        config = config_class(**mandatory_kwargs)
        config.save_pretrained(tmp_path)
        # add a spurious key to the config
        with open(tmp_path / "adapter_config.json") as f:
            config_dict = json.load(f)
        config_dict["foobar"] = "baz"
        config_dict["spam"] = 123
        with open(tmp_path / "adapter_config.json", "w") as f:
            json.dump(config_dict, f)

        msg = f"Unexpected keyword arguments ['foobar', 'spam'] for class {config_class.__name__}, these are ignored."
        config_from_pretrained = PeftConfig.from_pretrained(tmp_path)  # <== use PeftConfig here

        expected_num_warnings = 1
        # TODO: remove once Bone is removed in v0.19.0
        if config_class == BoneConfig:
            expected_num_warnings = 2  # Bone has 1 more warning about it being deprecated

        assert len(recwarn) == expected_num_warnings
        assert recwarn.list[-1].message.args[0].startswith(msg)
        assert "foo" not in config_from_pretrained.to_dict()
        assert "spam" not in config_from_pretrained.to_dict()
        assert config.to_dict() == config_from_pretrained.to_dict()
        assert isinstance(config_from_pretrained, config_class)

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_from_pretrained_sanity_check(self, config_class, mandatory_kwargs, tmp_path):
        """Following up on the previous test about forward compatibility, we *don't* want any random json to be accepted as
        a PEFT config. There should be a minimum set of required keys.
        """
        non_peft_json = {"foo": "bar", "baz": 123}
        with open(tmp_path / "adapter_config.json", "w") as f:
            json.dump(non_peft_json, f)

        msg = f"The {config_class.__name__} config that is trying to be loaded is missing required keys: {{'peft_type'}}."
        with pytest.raises(TypeError, match=msg):
            config_class.from_pretrained(tmp_path)

    def test_lora_config_layers_to_transform_validation(self):
        """Test that specifying layers_pattern without layers_to_transform raises an error"""
        with pytest.raises(
            ValueError, match="When `layers_pattern` is specified, `layers_to_transform` must also be specified."
        ):
            LoraConfig(r=8, lora_alpha=16, target_modules=["query", "value"], layers_pattern="model.layers")

        # Test that specifying both layers_to_transform and layers_pattern works fine
        config = LoraConfig(
            r=8,
            lora_alpha=16,
            target_modules=["query", "value"],
            layers_to_transform=[0, 1, 2],
            layers_pattern="model.layers",
        )
        assert config.layers_to_transform == [0, 1, 2]
        assert config.layers_pattern == "model.layers"

        # Test that not specifying either works fine
        config = LoraConfig(
            r=8,
            lora_alpha=16,
            target_modules=["query", "value"],
        )
        assert config.layers_to_transform is None
        assert config.layers_pattern is None

    @pytest.mark.parametrize("version", ["0.10", "0.17.0", "1"])
    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_peft_version_is_stored(self, version, config_class, mandatory_kwargs, monkeypatch, tmp_path):
        # Check that the PEFT version is automatically stored in/restored from the config file.
        from peft import config

        monkeypatch.setattr(config, "__version__", version)

        peft_config = config_class(**mandatory_kwargs)
        assert peft_config.peft_version == version

        peft_config.save_pretrained(tmp_path)
        with open(tmp_path / "adapter_config.json") as f:
            config_dict = json.load(f)
        assert config_dict["peft_version"] == version

        # ensure that the version from the config is being loaded, not just the current version
        monkeypatch.setattr(config, "__version__", "0.1.another-version")

        # load from config
        config_loaded = PeftConfig.from_pretrained(tmp_path)
        assert config_loaded.peft_version == version

        # load from json
        config_path = tmp_path / "adapter_config.json"
        config_json = PeftConfig.from_json_file(str(config_path))
        assert config_json["peft_version"] == version

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_peft_version_is_dev_version(self, config_class, mandatory_kwargs, monkeypatch, tmp_path):
        # When a dev version of PEFT is installed, the actual state of PEFT is ambiguous. Therefore, try to determine
        # the commit hash too and store it as part of the version string.
        from peft import config

        version = "0.15.0.dev7"
        monkeypatch.setattr(config, "__version__", version)

        def fake_commit_hash(pkg_name):
            return "abcdef012345"

        monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash)

        peft_config = config_class(**mandatory_kwargs)
        expected_version = f"{version}@{fake_commit_hash('peft')}"
        assert peft_config.peft_version == expected_version

        peft_config.save_pretrained(tmp_path)
        config_loaded = PeftConfig.from_pretrained(tmp_path)
        assert config_loaded.peft_version == expected_version

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_peft_version_is_dev_version_but_commit_hash_cannot_be_determined(
        self, config_class, mandatory_kwargs, monkeypatch, tmp_path
    ):
        # There can be cases where PEFT is using a dev version but the commit hash cannot be determined. In this case,
        # just store the dev version string.
        from peft import config

        version = "0.15.0.dev7"
        monkeypatch.setattr(config, "__version__", version)

        def fake_commit_hash(pkg_name):
            return None

        monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash)

        peft_config = config_class(**mandatory_kwargs)
        assert peft_config.peft_version == version + "@UNKNOWN"

        peft_config.save_pretrained(tmp_path)
        config_loaded = PeftConfig.from_pretrained(tmp_path)
        assert config_loaded.peft_version == version + "@UNKNOWN"

    @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES)
    def test_peft_version_warn_when_commit_hash_errors(self, config_class, mandatory_kwargs, monkeypatch, tmp_path):
        # We try to get the PEFT commit hash if a dev version is installed. But in case there is any kind of error
        # there, we don't want user code to break. Instead, the code should run and a version without commit hash should
        # be recorded. In addition, there should be a warning.
        from peft import config

        version = "0.15.0.dev7"
        monkeypatch.setattr(config, "__version__", version)

        def fake_commit_hash_raises(pkg_name):
            raise Exception("Error for testing purpose")

        monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash_raises)

        msg = "A dev version of PEFT is used but there was an error while trying to determine the commit hash"
        with pytest.warns(UserWarning, match=msg):
            peft_config = config_class(**mandatory_kwargs)
        assert peft_config.peft_version == version + "@UNKNOWN"