File size: 34,881 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import tempfile
from unittest.mock import Mock, call, patch

import pytest
import torch
from safetensors.torch import load_file as safe_load_file
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
)

from peft import (
    AdaLoraConfig,
    BOFTConfig,
    BoneConfig,
    C3AConfig,
    CPTConfig,
    FourierFTConfig,
    HRAConfig,
    IA3Config,
    LoraConfig,
    MissConfig,
    OFTConfig,
    PrefixTuningConfig,
    PromptEncoderConfig,
    PromptTuningConfig,
    PromptTuningInit,
    RoadConfig,
    ShiraConfig,
    VBLoRAConfig,
    VeraConfig,
    WaveFTConfig,
    get_peft_model,
)

from .testing_common import PeftCommonTester
from .testing_utils import device_count, hub_online_once, load_dataset_english_quotes, set_init_weights_false


PEFT_DECODER_MODELS_TO_TEST = [
    "hf-internal-testing/tiny-random-OPTForCausalLM",
    "hf-internal-testing/tiny-random-GPT2LMHeadModel",
    "hf-internal-testing/tiny-random-BloomForCausalLM",
    "hf-internal-testing/tiny-random-gpt_neo",
    "hf-internal-testing/tiny-random-GPTJForCausalLM",
    "hf-internal-testing/tiny-random-GPTBigCodeForCausalLM",
    "trl-internal-testing/tiny-random-LlamaForCausalLM",
    "peft-internal-testing/tiny-dummy-qwen2",
    "hf-internal-testing/tiny-random-Gemma3ForCausalLM",
]

SMALL_GRID_MODELS = [
    "hf-internal-testing/tiny-random-gpt2",
    "hf-internal-testing/tiny-random-OPTForCausalLM",
    "hf-internal-testing/tiny-random-MistralForCausalLM",
    "peft-internal-testing/tiny-dummy-qwen2",
    "trl-internal-testing/tiny-random-LlamaForCausalLM",
]


# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
# Note: If the PEFT method offers an initialization option to make it an identity transform (typically via the
# init_weights argument), then this option should be set here, if it's not already the default.
ALL_CONFIGS = [
    (
        AdaLoraConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "total_step": 1,
        },
    ),
    (
        BOFTConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
        },
    ),
    (
        BoneConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "r": 2,
        },
    ),
    (
        MissConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "r": 2,
        },
    ),
    (
        CPTConfig,
        {
            "task_type": "CAUSAL_LM",
            "cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7],  # Example token IDs for testing
            "cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
            "cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
        },
    ),
    (
        FourierFTConfig,
        {
            "task_type": "CAUSAL_LM",
            "n_frequency": 10,
            "target_modules": None,
        },
    ),
    (
        HRAConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
        },
    ),
    (
        IA3Config,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "feedforward_modules": None,
        },
    ),
    (
        LoraConfig,
        {
            "task_type": "CAUSAL_LM",
            "r": 8,
            "lora_alpha": 32,
            "target_modules": None,
            "lora_dropout": 0.05,
            "bias": "none",
        },
    ),
    # Activated LoRA (aLoRA)
    (
        LoraConfig,
        {
            "task_type": "CAUSAL_LM",
            "r": 8,
            "lora_alpha": 32,
            "target_modules": None,
            "lora_dropout": 0.05,
            "bias": "none",
            "alora_invocation_tokens": [1],
        },
    ),
    (
        LoraConfig,
        {
            "task_type": "CAUSAL_LM",
            "r": 8,
            "lora_alpha": 32,
            "target_modules": None,
            "lora_dropout": 0.05,
            "bias": "none",
            # not one test input sequence will ever have this token, this should do nothing at all
            "alora_invocation_tokens": [1000],
        },
    ),
    # LoRA + trainable tokens
    (
        LoraConfig,
        {
            "task_type": "CAUSAL_LM",
            "r": 8,
            "lora_alpha": 32,
            "target_modules": None,
            "lora_dropout": 0.05,
            "bias": "none",
            "trainable_token_indices": [0, 1, 3],
        },
    ),
    (
        OFTConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
        },
    ),
    (
        PrefixTuningConfig,
        {
            "task_type": "CAUSAL_LM",
            "num_virtual_tokens": 10,
        },
    ),
    (
        PromptEncoderConfig,
        {
            "task_type": "CAUSAL_LM",
            "num_virtual_tokens": 10,
            "encoder_hidden_size": 32,
        },
    ),
    (
        PromptTuningConfig,
        {
            "task_type": "CAUSAL_LM",
            "num_virtual_tokens": 10,
        },
    ),
    (
        RoadConfig,
        {
            "task_type": "CAUSAL_LM",
            "variant": "road_1",
            "group_size": 2,
        },
    ),
    (
        ShiraConfig,
        {
            "r": 1,
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "init_weights": False,
        },
    ),
    (
        VBLoRAConfig,
        {
            "task_type": "CAUSAL_LM",
            "target_modules": None,
            "vblora_dropout": 0.05,
            "vector_length": 1,
            "num_vectors": 2,
        },
    ),
    (
        VeraConfig,
        {
            "task_type": "CAUSAL_LM",
            "r": 8,
            "target_modules": None,
            "vera_dropout": 0.05,
            "projection_prng_key": 0xFF,
            "d_initial": 0.1,
            "save_projection": True,
            "bias": "none",
        },
    ),
    (
        C3AConfig,
        {
            "task_type": "CAUSAL_LM",
            "block_size": 1,  # Some test cases contain shapes of prime numbers where `block_size` must be 1
            "target_modules": None,
        },
    ),
    (
        WaveFTConfig,
        {
            "task_type": "CAUSAL_LM",
            "n_frequency": 8,
            "target_modules": None,
        },
    ),
]


def _skip_if_not_conv1d_supported(model_id, config_cls):
    if "GPT2LMHeadModel" in model_id and config_cls in [
        BOFTConfig,
        BoneConfig,
        HRAConfig,
        OFTConfig,
        RoadConfig,
        ShiraConfig,
        C3AConfig,
        MissConfig,
    ]:
        pytest.skip("Skipping BOFT/HRA/OFT/Bone/Road/SHiRA/C3A/MiSS for GPT2LMHeadModel")


def _skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls):
    if "GPT2LMHeadModel" in model_id and config_cls in [
        AdaLoraConfig,
        BOFTConfig,
        HRAConfig,
        OFTConfig,
        BoneConfig,
        C3AConfig,
        RoadConfig,
        MissConfig,
    ]:
        pytest.skip("Skipping AdaLora/BOFT/HRA/OFT/Bone/MiSS for GPT2LMHeadModel")


def _skip_alora_no_activation(config_cls, config_kwargs):
    if config_cls is LoraConfig and config_kwargs.get("alora_invocation_tokens") == [1000]:
        pytest.skip("Skipping aLoRA no-activation-case because the test expects changed output which there won't be.")


class TestDecoderModels(PeftCommonTester):
    transformers_class = AutoModelForCausalLM

    def skipTest(self, reason=""):
        # for backwards compatibility with unittest style test classes
        pytest.skip(reason)

    def prepare_inputs_for_testing(self):
        input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
        attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
        return {"input_ids": input_ids, "attention_mask": attention_mask}

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_model_attr(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_adapter_name(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_adapter_name(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs):
        if config_cls != PromptTuningConfig:
            pytest.skip(f"This test does not apply to {config_cls}")
        config_kwargs = config_kwargs.copy()
        config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
        config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
        config_kwargs["tokenizer_name_or_path"] = model_id
        self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())

    def test_prompt_tuning_text_tokenizer_kwargs(self):
        # Allow users to pass additional arguments to Tokenizer.from_pretrained
        # Fix for #1032
        mock = Mock()
        orig_from_pretrained = AutoTokenizer.from_pretrained

        def mock_autotokenizer_from_pretrained(*args, **kwargs):
            mock(*args, **kwargs)
            return orig_from_pretrained(config.tokenizer_name_or_path)

        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        config = PromptTuningConfig(
            base_model_name_or_path=model_id,
            tokenizer_name_or_path=model_id,
            num_virtual_tokens=10,
            prompt_tuning_init=PromptTuningInit.TEXT,
            task_type="CAUSAL_LM",
            prompt_tuning_init_text="This is a test prompt.",
            tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
        )
        model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
        with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained):
            _ = get_peft_model(model, config)
        expected_call = call(model_id, trust_remote_code=True, foo="bar")
        assert mock.call_args == expected_call

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_prompt_tuning_sample_vocab_prepare_for_training(self, model_id, config_cls, config_kwargs):
        if config_cls != PromptTuningConfig:
            pytest.skip(f"This test does not apply to {config_cls}")

        config_kwargs = config_kwargs.copy()
        config_kwargs["prompt_tuning_init"] = PromptTuningInit.SAMPLE_VOCAB
        config_kwargs["tokenizer_name_or_path"] = model_id

        self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())

    def test_prompt_tuning_config_invalid_args(self):
        # Raise an error when tokenizer_kwargs is used with prompt_tuning_init!='TEXT', because this argument has no
        # function in that case
        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."):
            PromptTuningConfig(
                base_model_name_or_path=model_id,
                tokenizer_name_or_path=model_id,
                num_virtual_tokens=10,
                task_type="CAUSAL_LM",
                prompt_tuning_init_text="This is a test prompt.",
                prompt_tuning_init=PromptTuningInit.RANDOM,  # <= should not be used together with tokenizer_kwargs
                tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
            )

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_save_pretrained(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_save_pretrained(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False)

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_save_pretrained_selected_adapters(
            model_id, config_cls, config_kwargs.copy(), safe_serialization=False
        )

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_merge_layers(self, model_id, config_cls, config_kwargs):
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_merge_layers(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_merge_layers_multi(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_merge_layers_multi(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_merge_layers_nan(self, model_id, config_cls, config_kwargs):
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_merge_layers_nan(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
        if config_cls != LoraConfig:
            pytest.skip("Mixed adapter batches not supported for this config.")
        _skip_alora_no_activation(config_cls, config_kwargs)
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
        if config_cls != LoraConfig:
            pytest.skip("Mixed adapter batches not supported for this config.")
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_generate(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_generate(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_generate_pos_args(model_id, config_cls, config_kwargs.copy(), raises_err=False)

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_merge_layers_fp16(self, model_id, config_cls, config_kwargs):
        self._test_merge_layers_fp16(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
        self._test_generate_half_prec(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
        self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_training_decoders(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_training(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_training_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
        self._test_training_layer_indexing(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_training_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_inference_safetensors(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
        self._test_peft_model_device_map(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_delete_adapter(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_delete_adapter(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_unload_adapter(self, model_id, config_cls, config_kwargs):
        _skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls)
        _skip_if_not_conv1d_supported(model_id, config_cls)
        _skip_alora_no_activation(config_cls, config_kwargs)
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_unload_adapter(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
        self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_disable_adapter(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        _skip_alora_no_activation(config_cls, config_kwargs)
        config_kwargs = set_init_weights_false(config_cls, config_kwargs)
        self._test_disable_adapter(model_id, config_cls, config_kwargs.copy())

    def test_generate_adalora_no_dropout(self):
        # test for issue #730
        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        config_kwargs = {
            "target_modules": None,
            "task_type": "CAUSAL_LM",
            "lora_dropout": 0.0,
            "total_step": 1,
        }
        self._test_generate(model_id, AdaLoraConfig, config_kwargs.copy())

    @pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs):
        _skip_if_not_conv1d_supported(model_id, config_cls)
        if (platform.system() == "Darwin") and (config_cls == PrefixTuningConfig):
            # the error is:
            # > RuntimeError: unsupported operation: more than one element of the written-to tensor refers to a single
            # > memory location. Please clone() the tensor before performing the operation.
            # in transformers sdpa_mask_older_torch. As we (currently) cannot upgrade PyTorch on MacOS GH runners, we're
            # stuck with this error.
            # TODO: remove if torch can be upgraded on MacOS or if MacOS CI is removed
            pytest.skip("Prefix tuning fails on MacOS in this case, not worth fixing")
        self._test_passing_input_embeds_works("", model_id, config_cls, config_kwargs.copy())

    def test_lora_layer_replication(self):
        model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
        config_kwargs = {
            "target_modules": ["down_proj", "up_proj"],
            "task_type": "CAUSAL_LM",
            "lora_dropout": 0.0,
            "layer_replication": [[0, 1], [0, 2], [1, 2]],
        }
        model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
        config = LoraConfig(base_model_name_or_path=model_id, **config_kwargs)

        assert len(model.model.layers), "Expected 2 layers in original model." == 2
        model = get_peft_model(model, config)
        layers = model.base_model.model.model.layers
        assert len(layers) == 4, "Expected 4 layers in adapted model."
        assert (
            layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
            == layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
            and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
            == layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
        ), "Expected layers 0-1 and 2-3 to share weights"
        assert (
            layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
            != layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
        ), "Expected layers 0 and 2 to have different weights"
        assert (
            layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
            != layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
            and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
            != layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
        ), "Expected all LoRA adapters to have distinct weights"
        assert len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8, (
            "Expected 8 LoRA adapters since we are adding one each for up and down."
        )
        self._test_prepare_for_training(model_id, LoraConfig, config_kwargs.copy())
        self._test_generate(model_id, LoraConfig, config_kwargs.copy())

    def test_prompt_learning_with_grouped_query_attention(self):
        # See 1901, fixes a bug with handling GQA
        model_id = "peft-internal-testing/tiny-dummy-qwen2"
        base_model = AutoModelForCausalLM.from_pretrained(model_id)
        peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
        model = get_peft_model(base_model, peft_config)
        x = torch.tensor([[1, 2, 3]])
        # does not raise
        model(x)

    def test_prefix_tuning_mistral(self):
        # See issue 869, 1962
        model_id = "hf-internal-testing/tiny-random-MistralForCausalLM"
        base_model = AutoModelForCausalLM.from_pretrained(model_id)
        peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
        model = get_peft_model(base_model, peft_config)

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.pad_token = tokenizer.eos_token

        def process(samples):
            tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
            return tokenized

        data = load_dataset_english_quotes()
        data = data.map(process, batched=True)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            trainer = Trainer(
                model=model,
                train_dataset=data["train"],
                args=TrainingArguments(
                    num_train_epochs=1,
                    max_steps=5,
                    per_device_train_batch_size=4,
                    output_dir=tmp_dirname,
                ),
                data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
            )
            trainer.train()

    @pytest.mark.parametrize("model_id", SMALL_GRID_MODELS)
    @pytest.mark.parametrize(
        "config_cls,config_kwargs",
        [
            (
                PromptTuningConfig,
                {
                    "num_virtual_tokens": 10,
                    "task_type": "CAUSAL_LM",
                },
            ),
            (
                PrefixTuningConfig,
                {
                    "num_virtual_tokens": 10,
                    "task_type": "CAUSAL_LM",
                },
            ),
            (
                PromptEncoderConfig,
                {
                    "num_virtual_tokens": 10,
                    "encoder_hidden_size": 32,
                    "task_type": "CAUSAL_LM",
                },
            ),
            (
                CPTConfig,
                {
                    "cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7],  # Example token IDs for testing
                    "cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
                    "cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
                },
            ),
        ],
    )
    def test_prompt_learning_with_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
        # See issue 869
        # Test prompt learning methods with gradient checkpointing in a semi realistic setting.
        # Prefix tuning does not work if the model uses the new caching implementation. In that case, a helpful error
        # should be raised.

        # skip if multi GPU, since this results in DataParallel usage by Trainer, which fails with "CUDA device
        # assertion", breaking subsequent tests
        if device_count > 1:
            pytest.skip("Skip on multi-GPU setups")
        peft_config = config_cls(base_model_name_or_path=model_id, **config_kwargs)
        base_model = self.transformers_class.from_pretrained(model_id)
        base_model.gradient_checkpointing_enable()

        try:
            model = get_peft_model(base_model, peft_config)
        except ValueError as exc:
            # Some methods will raise a helpful error. After this, exit the test, as training would fail.
            assert config_cls == PrefixTuningConfig
            assert "Prefix tuning does not work with gradient checkpointing" in str(exc)
            return

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.pad_token = tokenizer.eos_token

        def process(samples):
            tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
            return tokenized

        data = load_dataset_english_quotes()
        data = data.map(process, batched=True)

        with tempfile.TemporaryDirectory() as tmp_dirname:
            trainer = Trainer(
                model=model,
                train_dataset=data["train"],
                args=TrainingArguments(
                    num_train_epochs=1,
                    max_steps=3,
                    per_device_train_batch_size=4,
                    output_dir=tmp_dirname,
                ),
                data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
            )
            trainer.train()

    @pytest.mark.parametrize("save_embedding_layers", ["auto", True, False])
    @pytest.mark.parametrize(
        "peft_config",
        [
            (LoraConfig(target_modules=["lin0", "embed_tokens"], init_lora_weights=False)),
            (LoraConfig(target_modules=r".*\.embed_tokens", init_lora_weights=False)),
        ],
    )
    def test_save_pretrained_targeting_lora_to_embedding_layer(self, save_embedding_layers, tmp_path, peft_config):
        model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"

        with hub_online_once(model_id):
            model = AutoModelForCausalLM.from_pretrained(model_id)
            model = get_peft_model(model, peft_config)

            if save_embedding_layers == "auto":
                # assert warning
                msg_start = "Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`."
                with pytest.warns(UserWarning, match=msg_start):
                    model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)
            else:
                model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)

            state_dict = safe_load_file(tmp_path / "adapter_model.safetensors")
            contains_embedding = "base_model.model.model.embed_tokens.base_layer.weight" in state_dict

            if save_embedding_layers in ["auto", True]:
                assert contains_embedding
                assert torch.allclose(
                    model.base_model.model.model.embed_tokens.base_layer.weight,
                    state_dict["base_model.model.model.embed_tokens.base_layer.weight"],
                )
            else:
                assert not contains_embedding

    @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
    def test_set_requires_grad_prompt_learning_raises(self, config_cls, config_kwargs):
        # Test that for prompt learning, calling set_requires_grad raises an error with an appropriate error message.
        # Note that for non-prompt learning methods, set_requires_grad is being tested for custom models, so there is no
        # specific test here.
        model_id = PEFT_DECODER_MODELS_TO_TEST[0]  # it's enough to test this with one model
        config = config_cls(
            base_model_name_or_path=model_id,
            **config_kwargs,
        )
        if not config.is_prompt_learning:
            pytest.skip("This test is only for prompt learning methods.")

        with hub_online_once(model_id + config_kwargs.get("tokenizer_name_or_path", "")):
            model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
            model = get_peft_model(model, config)
            msg = "Setting `requires_grad` is not supported for prompt learning methods like"
            with pytest.raises(TypeError, match=msg):
                model.set_requires_grad(adapter_names="adpater0")