File size: 34,881 Bytes
302920f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import tempfile
from unittest.mock import Mock, call, patch
import pytest
import torch
from safetensors.torch import load_file as safe_load_file
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)
from peft import (
AdaLoraConfig,
BOFTConfig,
BoneConfig,
C3AConfig,
CPTConfig,
FourierFTConfig,
HRAConfig,
IA3Config,
LoraConfig,
MissConfig,
OFTConfig,
PrefixTuningConfig,
PromptEncoderConfig,
PromptTuningConfig,
PromptTuningInit,
RoadConfig,
ShiraConfig,
VBLoRAConfig,
VeraConfig,
WaveFTConfig,
get_peft_model,
)
from .testing_common import PeftCommonTester
from .testing_utils import device_count, hub_online_once, load_dataset_english_quotes, set_init_weights_false
PEFT_DECODER_MODELS_TO_TEST = [
"hf-internal-testing/tiny-random-OPTForCausalLM",
"hf-internal-testing/tiny-random-GPT2LMHeadModel",
"hf-internal-testing/tiny-random-BloomForCausalLM",
"hf-internal-testing/tiny-random-gpt_neo",
"hf-internal-testing/tiny-random-GPTJForCausalLM",
"hf-internal-testing/tiny-random-GPTBigCodeForCausalLM",
"trl-internal-testing/tiny-random-LlamaForCausalLM",
"peft-internal-testing/tiny-dummy-qwen2",
"hf-internal-testing/tiny-random-Gemma3ForCausalLM",
]
SMALL_GRID_MODELS = [
"hf-internal-testing/tiny-random-gpt2",
"hf-internal-testing/tiny-random-OPTForCausalLM",
"hf-internal-testing/tiny-random-MistralForCausalLM",
"peft-internal-testing/tiny-dummy-qwen2",
"trl-internal-testing/tiny-random-LlamaForCausalLM",
]
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
# Note: If the PEFT method offers an initialization option to make it an identity transform (typically via the
# init_weights argument), then this option should be set here, if it's not already the default.
ALL_CONFIGS = [
(
AdaLoraConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"total_step": 1,
},
),
(
BOFTConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
BoneConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"r": 2,
},
),
(
MissConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"r": 2,
},
),
(
CPTConfig,
{
"task_type": "CAUSAL_LM",
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
},
),
(
FourierFTConfig,
{
"task_type": "CAUSAL_LM",
"n_frequency": 10,
"target_modules": None,
},
),
(
HRAConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
IA3Config,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"feedforward_modules": None,
},
),
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
},
),
# Activated LoRA (aLoRA)
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"alora_invocation_tokens": [1],
},
),
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
# not one test input sequence will ever have this token, this should do nothing at all
"alora_invocation_tokens": [1000],
},
),
# LoRA + trainable tokens
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"trainable_token_indices": [0, 1, 3],
},
),
(
OFTConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
PrefixTuningConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
},
),
(
PromptEncoderConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
},
),
(
PromptTuningConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
},
),
(
RoadConfig,
{
"task_type": "CAUSAL_LM",
"variant": "road_1",
"group_size": 2,
},
),
(
ShiraConfig,
{
"r": 1,
"task_type": "CAUSAL_LM",
"target_modules": None,
"init_weights": False,
},
),
(
VBLoRAConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"vblora_dropout": 0.05,
"vector_length": 1,
"num_vectors": 2,
},
),
(
VeraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"target_modules": None,
"vera_dropout": 0.05,
"projection_prng_key": 0xFF,
"d_initial": 0.1,
"save_projection": True,
"bias": "none",
},
),
(
C3AConfig,
{
"task_type": "CAUSAL_LM",
"block_size": 1, # Some test cases contain shapes of prime numbers where `block_size` must be 1
"target_modules": None,
},
),
(
WaveFTConfig,
{
"task_type": "CAUSAL_LM",
"n_frequency": 8,
"target_modules": None,
},
),
]
def _skip_if_not_conv1d_supported(model_id, config_cls):
if "GPT2LMHeadModel" in model_id and config_cls in [
BOFTConfig,
BoneConfig,
HRAConfig,
OFTConfig,
RoadConfig,
ShiraConfig,
C3AConfig,
MissConfig,
]:
pytest.skip("Skipping BOFT/HRA/OFT/Bone/Road/SHiRA/C3A/MiSS for GPT2LMHeadModel")
def _skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls):
if "GPT2LMHeadModel" in model_id and config_cls in [
AdaLoraConfig,
BOFTConfig,
HRAConfig,
OFTConfig,
BoneConfig,
C3AConfig,
RoadConfig,
MissConfig,
]:
pytest.skip("Skipping AdaLora/BOFT/HRA/OFT/Bone/MiSS for GPT2LMHeadModel")
def _skip_alora_no_activation(config_cls, config_kwargs):
if config_cls is LoraConfig and config_kwargs.get("alora_invocation_tokens") == [1000]:
pytest.skip("Skipping aLoRA no-activation-case because the test expects changed output which there won't be.")
class TestDecoderModels(PeftCommonTester):
transformers_class = AutoModelForCausalLM
def skipTest(self, reason=""):
# for backwards compatibility with unittest style test classes
pytest.skip(reason)
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_model_attr(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adapter_name(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_adapter_name(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs):
if config_cls != PromptTuningConfig:
pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
def test_prompt_tuning_text_tokenizer_kwargs(self):
# Allow users to pass additional arguments to Tokenizer.from_pretrained
# Fix for #1032
mock = Mock()
orig_from_pretrained = AutoTokenizer.from_pretrained
def mock_autotokenizer_from_pretrained(*args, **kwargs):
mock(*args, **kwargs)
return orig_from_pretrained(config.tokenizer_name_or_path)
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config = PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
prompt_tuning_init=PromptTuningInit.TEXT,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained):
_ = get_peft_model(model, config)
expected_call = call(model_id, trust_remote_code=True, foo="bar")
assert mock.call_args == expected_call
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prompt_tuning_sample_vocab_prepare_for_training(self, model_id, config_cls, config_kwargs):
if config_cls != PromptTuningConfig:
pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.SAMPLE_VOCAB
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
def test_prompt_tuning_config_invalid_args(self):
# Raise an error when tokenizer_kwargs is used with prompt_tuning_init!='TEXT', because this argument has no
# function in that case
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."):
PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
prompt_tuning_init=PromptTuningInit.RANDOM, # <= should not be used together with tokenizer_kwargs
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained_selected_adapters(
model_id, config_cls, config_kwargs.copy(), safe_serialization=False
)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_multi(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers_multi(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_nan(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers_nan(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
if config_cls != LoraConfig:
pytest.skip("Mixed adapter batches not supported for this config.")
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
if config_cls != LoraConfig:
pytest.skip("Mixed adapter batches not supported for this config.")
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_generate(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_generate_pos_args(model_id, config_cls, config_kwargs.copy(), raises_err=False)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_fp16(self, model_id, config_cls, config_kwargs):
self._test_merge_layers_fp16(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
self._test_generate_half_prec(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
self._test_training_layer_indexing(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_inference_safetensors(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
self._test_peft_model_device_map(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_delete_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
_skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls)
_skip_if_not_conv1d_supported(model_id, config_cls)
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_unload_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_disable_adapter(model_id, config_cls, config_kwargs.copy())
def test_generate_adalora_no_dropout(self):
# test for issue #730
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config_kwargs = {
"target_modules": None,
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
"total_step": 1,
}
self._test_generate(model_id, AdaLoraConfig, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
if (platform.system() == "Darwin") and (config_cls == PrefixTuningConfig):
# the error is:
# > RuntimeError: unsupported operation: more than one element of the written-to tensor refers to a single
# > memory location. Please clone() the tensor before performing the operation.
# in transformers sdpa_mask_older_torch. As we (currently) cannot upgrade PyTorch on MacOS GH runners, we're
# stuck with this error.
# TODO: remove if torch can be upgraded on MacOS or if MacOS CI is removed
pytest.skip("Prefix tuning fails on MacOS in this case, not worth fixing")
self._test_passing_input_embeds_works("", model_id, config_cls, config_kwargs.copy())
def test_lora_layer_replication(self):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
config_kwargs = {
"target_modules": ["down_proj", "up_proj"],
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
"layer_replication": [[0, 1], [0, 2], [1, 2]],
}
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
config = LoraConfig(base_model_name_or_path=model_id, **config_kwargs)
assert len(model.model.layers), "Expected 2 layers in original model." == 2
model = get_peft_model(model, config)
layers = model.base_model.model.model.layers
assert len(layers) == 4, "Expected 4 layers in adapted model."
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0-1 and 2-3 to share weights"
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
!= layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0 and 2 to have different weights"
assert (
layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
), "Expected all LoRA adapters to have distinct weights"
assert len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8, (
"Expected 8 LoRA adapters since we are adding one each for up and down."
)
self._test_prepare_for_training(model_id, LoraConfig, config_kwargs.copy())
self._test_generate(model_id, LoraConfig, config_kwargs.copy())
def test_prompt_learning_with_grouped_query_attention(self):
# See 1901, fixes a bug with handling GQA
model_id = "peft-internal-testing/tiny-dummy-qwen2"
base_model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
model = get_peft_model(base_model, peft_config)
x = torch.tensor([[1, 2, 3]])
# does not raise
model(x)
def test_prefix_tuning_mistral(self):
# See issue 869, 1962
model_id = "hf-internal-testing/tiny-random-MistralForCausalLM"
base_model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
model = get_peft_model(base_model, peft_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
def process(samples):
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
return tokenized
data = load_dataset_english_quotes()
data = data.map(process, batched=True)
with tempfile.TemporaryDirectory() as tmp_dirname:
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
num_train_epochs=1,
max_steps=5,
per_device_train_batch_size=4,
output_dir=tmp_dirname,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
@pytest.mark.parametrize("model_id", SMALL_GRID_MODELS)
@pytest.mark.parametrize(
"config_cls,config_kwargs",
[
(
PromptTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "CAUSAL_LM",
},
),
(
PrefixTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "CAUSAL_LM",
},
),
(
PromptEncoderConfig,
{
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
"task_type": "CAUSAL_LM",
},
),
(
CPTConfig,
{
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
},
),
],
)
def test_prompt_learning_with_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
# See issue 869
# Test prompt learning methods with gradient checkpointing in a semi realistic setting.
# Prefix tuning does not work if the model uses the new caching implementation. In that case, a helpful error
# should be raised.
# skip if multi GPU, since this results in DataParallel usage by Trainer, which fails with "CUDA device
# assertion", breaking subsequent tests
if device_count > 1:
pytest.skip("Skip on multi-GPU setups")
peft_config = config_cls(base_model_name_or_path=model_id, **config_kwargs)
base_model = self.transformers_class.from_pretrained(model_id)
base_model.gradient_checkpointing_enable()
try:
model = get_peft_model(base_model, peft_config)
except ValueError as exc:
# Some methods will raise a helpful error. After this, exit the test, as training would fail.
assert config_cls == PrefixTuningConfig
assert "Prefix tuning does not work with gradient checkpointing" in str(exc)
return
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
def process(samples):
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
return tokenized
data = load_dataset_english_quotes()
data = data.map(process, batched=True)
with tempfile.TemporaryDirectory() as tmp_dirname:
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
num_train_epochs=1,
max_steps=3,
per_device_train_batch_size=4,
output_dir=tmp_dirname,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
@pytest.mark.parametrize("save_embedding_layers", ["auto", True, False])
@pytest.mark.parametrize(
"peft_config",
[
(LoraConfig(target_modules=["lin0", "embed_tokens"], init_lora_weights=False)),
(LoraConfig(target_modules=r".*\.embed_tokens", init_lora_weights=False)),
],
)
def test_save_pretrained_targeting_lora_to_embedding_layer(self, save_embedding_layers, tmp_path, peft_config):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, peft_config)
if save_embedding_layers == "auto":
# assert warning
msg_start = "Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`."
with pytest.warns(UserWarning, match=msg_start):
model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)
else:
model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)
state_dict = safe_load_file(tmp_path / "adapter_model.safetensors")
contains_embedding = "base_model.model.model.embed_tokens.base_layer.weight" in state_dict
if save_embedding_layers in ["auto", True]:
assert contains_embedding
assert torch.allclose(
model.base_model.model.model.embed_tokens.base_layer.weight,
state_dict["base_model.model.model.embed_tokens.base_layer.weight"],
)
else:
assert not contains_embedding
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_set_requires_grad_prompt_learning_raises(self, config_cls, config_kwargs):
# Test that for prompt learning, calling set_requires_grad raises an error with an appropriate error message.
# Note that for non-prompt learning methods, set_requires_grad is being tested for custom models, so there is no
# specific test here.
model_id = PEFT_DECODER_MODELS_TO_TEST[0] # it's enough to test this with one model
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if not config.is_prompt_learning:
pytest.skip("This test is only for prompt learning methods.")
with hub_online_once(model_id + config_kwargs.get("tokenizer_name_or_path", "")):
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
model = get_peft_model(model, config)
msg = "Setting `requires_grad` is not supported for prompt learning methods like"
with pytest.raises(TypeError, match=msg):
model.set_requires_grad(adapter_names="adpater0")
|