File size: 18,635 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import pytest
import torch
from diffusers import StableDiffusionPipeline
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer

from peft import LoraConfig, get_peft_model
from peft.helpers import check_if_peft_model, disable_input_dtype_casting, rescale_adapter_scale
from peft.tuners.lora.layer import LoraLayer
from peft.utils import infer_device


class TestCheckIsPeftModel:
    def test_valid_hub_model(self):
        result = check_if_peft_model("peft-internal-testing/gpt2-lora-random")
        assert result is True

    def test_invalid_hub_model(self):
        result = check_if_peft_model("gpt2")
        assert result is False

    def test_nonexisting_hub_model(self):
        result = check_if_peft_model("peft-internal-testing/non-existing-model")
        assert result is False

    def test_local_model_valid(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        config = LoraConfig()
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path / "peft-gpt2-valid")
        result = check_if_peft_model(tmp_path / "peft-gpt2-valid")
        assert result is True

    def test_local_model_invalid(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        model.save_pretrained(tmp_path / "peft-gpt2-invalid")
        result = check_if_peft_model(tmp_path / "peft-gpt2-invalid")
        assert result is False

    def test_local_model_broken_config(self, tmp_path):
        with open(tmp_path / "adapter_config.json", "w") as f:
            f.write('{"foo": "bar"}')

        result = check_if_peft_model(tmp_path)
        assert result is False

    def test_local_model_non_default_name(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        config = LoraConfig()
        model = get_peft_model(model, config, adapter_name="other")
        model.save_pretrained(tmp_path / "peft-gpt2-other")

        # no default adapter here
        result = check_if_peft_model(tmp_path / "peft-gpt2-other")
        assert result is False

        # with adapter name
        result = check_if_peft_model(tmp_path / "peft-gpt2-other" / "other")
        assert result is True


class TestScalingAdapters:
    @pytest.fixture(scope="class")
    def tokenizer(self):
        return AutoTokenizer.from_pretrained("facebook/opt-125m")

    def get_scale_from_modules(self, model):
        layer_to_scale_map = {}
        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                layer_to_scale_map[name] = module.scaling

        return layer_to_scale_map

    def test_rescale_adapter_scale(self, tokenizer):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
        )

        model = get_peft_model(model, lora_config)
        model.eval()
        inputs = tokenizer("hello world", return_tensors="pt")

        with torch.no_grad():
            logits_before_scaling = model(**inputs).logits

        scales_before_scaling = self.get_scale_from_modules(model)

        with rescale_adapter_scale(model=model, multiplier=0.5):
            scales_during_scaling = self.get_scale_from_modules(model)
            for key in scales_before_scaling.keys():
                assert scales_before_scaling[key] != scales_during_scaling[key]

            with torch.no_grad():
                logits_during_scaling = model(**inputs).logits

            assert not torch.allclose(logits_before_scaling, logits_during_scaling)

        scales_after_scaling = self.get_scale_from_modules(model)
        for key in scales_before_scaling.keys():
            assert scales_before_scaling[key] == scales_after_scaling[key]

        with torch.no_grad():
            logits_after_scaling = model(**inputs).logits

        assert torch.allclose(logits_before_scaling, logits_after_scaling)

    def test_wrong_scaling_datatype(self):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
        )

        model = get_peft_model(model, lora_config)

        # we expect a type error here becuase of wrong datatpye of multiplier
        multiplier = "a"
        with pytest.raises(TypeError, match=f"Argument multiplier should be of type float, got {type(multiplier)}"):
            with rescale_adapter_scale(model=model, multiplier=multiplier):
                pass

    def test_not_lora_model(self):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")

        # we expect a value error here because the model
        # does not have lora layers
        with pytest.raises(ValueError, match="scaling is only supported for models with `LoraLayer`s"):
            with rescale_adapter_scale(model=model, multiplier=0.5):
                pass

    def test_scaling_set_to_zero(self, tokenizer):
        base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        inputs = tokenizer("hello world", return_tensors="pt")

        base_model.eval()

        with torch.no_grad():
            logits_base_model = base_model(**inputs).logits

        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
        )
        lora_model = get_peft_model(base_model, lora_config)
        lora_model.eval()

        with rescale_adapter_scale(model=lora_model, multiplier=0.0):
            with torch.no_grad():
                logits_lora_model = lora_model(**inputs).logits

        assert torch.allclose(logits_base_model, logits_lora_model)

    def test_diffusers_pipeline(self):
        model_id = "hf-internal-testing/tiny-sd-pipe"
        pipeline = StableDiffusionPipeline.from_pretrained(model_id)

        text_encoder_kwargs = {
            "r": 8,
            "lora_alpha": 32,
            "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
            "lora_dropout": 0.0,
            "bias": "none",
        }
        unet_kwargs = {
            "r": 8,
            "lora_alpha": 32,
            "target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],
            "lora_dropout": 0.0,
            "bias": "none",
        }

        # Instantiate text_encoder adapter
        config_text_encoder = LoraConfig(**text_encoder_kwargs)
        pipeline.text_encoder = get_peft_model(pipeline.text_encoder, config_text_encoder)

        # Instantiate unet adapter
        config_unet = LoraConfig(**unet_kwargs)
        pipeline.unet = get_peft_model(pipeline.unet, config_unet)

        text_scales_before_scaling = self.get_scale_from_modules(pipeline.text_encoder)
        unet_scales_before_scaling = self.get_scale_from_modules(pipeline.unet)

        with (
            rescale_adapter_scale(model=pipeline.text_encoder, multiplier=0.5),
            rescale_adapter_scale(model=pipeline.unet, multiplier=0.5),
        ):
            text_scales_during_scaling = self.get_scale_from_modules(pipeline.text_encoder)
            unet_scales_during_scaling = self.get_scale_from_modules(pipeline.unet)
            for key in text_scales_before_scaling.keys():
                assert text_scales_before_scaling[key] != text_scales_during_scaling[key]
            for key in unet_scales_before_scaling.keys():
                assert unet_scales_before_scaling[key] != unet_scales_during_scaling[key]

        text_scales_fter_scaling = self.get_scale_from_modules(pipeline.text_encoder)
        unet_scales_after_scaling = self.get_scale_from_modules(pipeline.unet)
        for key in text_scales_before_scaling.keys():
            assert text_scales_before_scaling[key] == text_scales_fter_scaling[key]
        for key in unet_scales_before_scaling.keys():
            assert unet_scales_before_scaling[key] == unet_scales_after_scaling[key]

    def test_transformers_pipeline(self, tmp_path, tokenizer):
        # this uses a transformers model that loads the adapter directly
        model_id = "facebook/opt-125m"
        model = AutoModelForCausalLM.from_pretrained(model_id)
        config = LoraConfig(init_lora_weights=False)
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path / "opt-lora")
        del model

        # load directly into transformers model
        model = AutoModelForCausalLM.from_pretrained(model_id)
        model.load_adapter(tmp_path / "opt-lora")

        inputs = tokenizer("hello world", return_tensors="pt")

        model = model.eval()

        with torch.no_grad():
            logits_before_scaling = model(**inputs).logits
        scales_before_scaling = self.get_scale_from_modules(model)

        with rescale_adapter_scale(model=model, multiplier=0.5):
            scales_during_scaling = self.get_scale_from_modules(model)
            for key in scales_before_scaling.keys():
                assert scales_before_scaling[key] != scales_during_scaling[key]
            with torch.no_grad():
                logits_during_scaling = model(**inputs).logits
            assert not torch.allclose(logits_before_scaling, logits_during_scaling)
        scales_after_scaling = self.get_scale_from_modules(model)

        for key in scales_before_scaling.keys():
            assert scales_before_scaling[key] == scales_after_scaling[key]

        with torch.no_grad():
            logits_after_scaling = model(**inputs).logits

        assert torch.allclose(logits_before_scaling, logits_after_scaling)

    def test_multi_adapters(self, tokenizer):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
        )
        model = get_peft_model(model, lora_config)
        inputs = tokenizer("hello world", return_tensors="pt")

        # add another adaper and activate it
        model.add_adapter("other", lora_config)
        model.set_adapter("other")

        scales_before_scaling = self.get_scale_from_modules(model)
        model.eval()
        with torch.no_grad():
            logits_before = model(**inputs).logits

        with rescale_adapter_scale(model=model, multiplier=0.5):
            scales_during_scaling = self.get_scale_from_modules(model)
            for key in scales_before_scaling.keys():
                assert scales_before_scaling[key] != scales_during_scaling[key]

            with torch.no_grad():
                logits_during = model(**inputs).logits

            assert not torch.allclose(logits_before, logits_during)

        scales_after_scaling = self.get_scale_from_modules(model)
        for key in scales_before_scaling.keys():
            assert scales_before_scaling[key] == scales_after_scaling[key]

        with torch.no_grad():
            logits_after = model(**inputs).logits

        assert torch.allclose(logits_before, logits_after)

    def test_rank_alpha_pattern(self, tokenizer):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
            rank_pattern={"k_proj": 2},
            alpha_pattern={"k_proj": 8},
        )

        model = get_peft_model(model, lora_config)
        model.eval()
        inputs = tokenizer("hello world", return_tensors="pt")

        with torch.no_grad():
            logits_before_scaling = model(**inputs).logits

        scales_before_scaling = self.get_scale_from_modules(model)

        with rescale_adapter_scale(model=model, multiplier=0.5):
            scales_during_scaling = self.get_scale_from_modules(model)
            for key in scales_before_scaling.keys():
                assert scales_before_scaling[key] != scales_during_scaling[key]

            with torch.no_grad():
                logits_during_scaling = model(**inputs).logits

            assert not torch.allclose(logits_before_scaling, logits_during_scaling)

        scales_after_scaling = self.get_scale_from_modules(model)
        for key in scales_before_scaling.keys():
            assert scales_before_scaling[key] == scales_after_scaling[key]

        with torch.no_grad():
            logits_after_scaling = model(**inputs).logits

        assert torch.allclose(logits_before_scaling, logits_after_scaling)

    def test_merging_adapter(self, tokenizer):
        model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["k_proj", "v_proj"],
            lora_dropout=0.1,
            bias="none",
            init_lora_weights=False,
        )

        model = get_peft_model(model, lora_config)
        model.eval()
        inputs = tokenizer("hello world", return_tensors="pt")

        with rescale_adapter_scale(model=model, multiplier=0.5):
            with torch.no_grad():
                logits_unmerged_scaling = model(**inputs).logits
            model = model.merge_and_unload()

        with torch.no_grad():
            logits_merged_scaling = model(**inputs).logits

        assert torch.allclose(logits_merged_scaling, logits_unmerged_scaling, atol=1e-4, rtol=1e-4)


class TestDisableInputDtypeCasting:
    """Test the context manager `disable_input_dtype_casting` that temporarily disables input dtype casting
    in the model.

    The test works as follows:

    We create a simple MLP and convert it to a PeftModel. The model dtype is set to float16. Then a pre-foward hook is
    added that casts the model parameters to float32. Moreover, a post-forward hook is added that casts the weights
    back to float16. The input dtype is float32.

    Without the disable_input_dtype_casting context, what would happen is that PEFT detects that the input dtype is
    float32 but the weight dtype is float16, so it casts the input to float16. Then the pre-forward hook casts the
    weight to float32, which results in a RuntimeError.

    With the disable_input_dtype_casting context, the input dtype is left as float32 and there is no error. We also add
    a hook to record the dtype of the result from the LoraLayer to ensure that it is indeed float32.

    """

    device = infer_device()
    dtype_record = []

    @torch.no_grad()
    def cast_params_to_fp32_pre_hook(self, module, input):
        for param in module.parameters(recurse=False):
            param.data = param.data.float()
        return input

    @torch.no_grad()
    def cast_params_to_fp16_hook(self, module, input, output):
        for param in module.parameters(recurse=False):
            param.data = param.data.half()
        return output

    def record_dtype_hook(self, module, input, output):
        self.dtype_record.append(output[0].dtype)

    @pytest.fixture
    def inputs(self):
        return torch.randn(4, 10, device=self.device, dtype=torch.float32)

    @pytest.fixture
    def base_model(self):
        class MLP(nn.Module):
            def __init__(self, bias=True):
                super().__init__()
                self.lin0 = nn.Linear(10, 20, bias=bias)
                self.lin1 = nn.Linear(20, 2, bias=bias)
                self.sm = nn.LogSoftmax(dim=-1)

            def forward(self, X):
                X = self.lin0(X)
                X = self.lin1(X)
                X = self.sm(X)
                return X

        return MLP()

    @pytest.fixture
    def model(self, base_model):
        config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
        model = get_peft_model(base_model, config).to(device=self.device, dtype=torch.float16)
        # Register hooks on the submodule that holds parameters
        for module in model.modules():
            if sum(p.numel() for p in module.parameters()) > 0:
                module.register_forward_pre_hook(self.cast_params_to_fp32_pre_hook)
                module.register_forward_hook(self.cast_params_to_fp16_hook)
            if isinstance(module, LoraLayer):
                module.register_forward_hook(self.record_dtype_hook)
        return model

    def test_disable_input_dtype_casting_active(self, model, inputs):
        self.dtype_record.clear()
        with disable_input_dtype_casting(model, active=True):
            model(inputs)
        assert self.dtype_record == [torch.float32]

    def test_no_disable_input_dtype_casting(self, model, inputs):
        msg = r"expected m.*1 and m.*2 to have the same dtype"
        with pytest.raises(RuntimeError, match=msg):
            model(inputs)

    def test_disable_input_dtype_casting_inactive(self, model, inputs):
        msg = r"expected m.*1 and m.*2 to have the same dtype"
        with pytest.raises(RuntimeError, match=msg):
            with disable_input_dtype_casting(model, active=False):
                model(inputs)

    def test_disable_input_dtype_casting_inactive_after_existing_context(self, model, inputs):
        # this is to ensure that when the context is left, we return to the previous behavior
        with disable_input_dtype_casting(model, active=True):
            model(inputs)

        # after the context exited, we're back to the error
        msg = r"expected m.*1 and m.*2 to have the same dtype"
        with pytest.raises(RuntimeError, match=msg):
            model(inputs)