File size: 11,067 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn

from peft import LoraConfig, get_peft_model
from peft.tuners.lora.layer import Conv1d as LoraConv1d
from peft.tuners.lora.layer import Conv2d as LoraConv2d
from peft.tuners.lora.layer import Embedding as LoraEmbedding
from peft.tuners.lora.layer import Linear as LoraLinear
from peft.tuners.lora.variants import (
    ALoraLinearVariant,
    DoraConv1dVariant,
    DoraConv2dVariant,
    DoraEmbeddingVariant,
    DoraLinearVariant,
    calculate_alora_offsets,
    get_alora_offsets_for_forward,
    get_alora_offsets_for_generate,
)


# Custom model featuring embeddings and a 'visual stack'
class CustomModel(nn.Module):
    """pytorch module that contains common targetable layers (linear, embedding, conv, ...)"""

    def __init__(self, num_embeddings=100, embedding_dim=16, num_classes=10):
        super().__init__()
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.conv1d = nn.Conv1d(in_channels=embedding_dim, out_channels=32, kernel_size=3, padding=1)
        self.conv2d = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
        self.flatten = nn.Flatten()
        self.dummy_conv1d_output_dim = 32 * 10
        self.dummy_conv2d_output_dim = 16 * 10 * 10
        self.linear1 = nn.Linear(self.dummy_conv1d_output_dim + self.dummy_conv2d_output_dim, 64)
        self.linear2 = nn.Linear(64, num_classes)
        self.relu = nn.ReLU()

    def forward(self, input_ids, dummy_image_input):
        # Path 1: Embedding -> Conv1d
        x1 = self.embedding(input_ids)  # (batch_size, seq_len, embedding_dim)
        x1 = x1.transpose(1, 2)  # (batch_size, embedding_dim, seq_len)
        x1 = self.relu(self.conv1d(x1))  # (batch_size, 32, seq_len)
        x1_flat = self.flatten(x1)
        # Path 2: Conv2d -> Linear
        x2 = self.relu(self.conv2d(dummy_image_input))  # (batch_size, 16, H, W)
        x2_flat = self.flatten(x2)  # (batch_size, 16*H*W)
        # Combine or select paths if making a functional model.
        # For this test, we mainly care about layer types, so forward might not be fully executed.
        # Let's use x2_flat for subsequent linear layers.
        output = self.relu(self.linear1(torch.concat([x1_flat, x2_flat], dim=1)))
        output = self.linear2(output)
        return output


# Used for testing alora_offsets for aLoRA
class DummyLM(nn.Module):
    def __init__(self, vocab_size: int = 10, hidden_dim: int = 8):
        super().__init__()
        self.embed = nn.Embedding(vocab_size, hidden_dim)
        self.linear = nn.Linear(hidden_dim, vocab_size)

    def forward(self, X=None, embeds=None, num_beams=None, alora_offsets=None):
        if X is not None:
            embeds = self.embed(X)
        return self.linear(embeds)


class MockTransformerWrapper:
    """Mock class to behave like a transformers model.

    This is needed because the tests initialize the model by calling transformers_class.from_pretrained.

    """

    @classmethod
    def from_pretrained(cls):
        # set the seed so that from_pretrained always returns the same model
        torch.manual_seed(0)

        torch_dtype = torch.float32

        return DummyLM().to(torch_dtype)


VARIANT_MAP = {
    "dora": {
        LoraLinear: DoraLinearVariant,
        LoraEmbedding: DoraEmbeddingVariant,
        LoraConv1d: DoraConv1dVariant,
        LoraConv2d: DoraConv2dVariant,
    },
    "alora": {
        LoraLinear: ALoraLinearVariant,
    },
}


TEST_CASES = [
    (
        "dora",
        LoraConfig,
        {"target_modules": ["linear1", "linear2", "conv1d", "conv2d", "embedding"], "use_dora": True},
    ),
    (
        "alora",
        LoraConfig,
        {"target_modules": ["linear1", "linear2"], "alora_invocation_tokens": [1]},
    ),
]


class TestLoraVariants:
    @pytest.mark.parametrize("variant_name, config_cls, config_kwargs", TEST_CASES)
    def test_variant_is_applied_to_layers(self, variant_name, config_cls, config_kwargs):
        # This test assumes that targeting and replacing layers works and that after `get_peft_model` we
        # have a model with LoRA layers. We just make sure that each LoRA layer has its variant set and
        # it is also the correct variant for that layer.
        base_model = CustomModel()
        peft_config = config_cls(**config_kwargs)
        peft_model = get_peft_model(base_model, peft_config)

        layer_type_map = VARIANT_MAP[variant_name]

        for _, module in peft_model.named_modules():
            if not hasattr(module, "lora_variant"):
                continue

            # Note that not every variant supports every layer. If it is not mapped it is deemed unsupported and
            # will not be tested.
            expected_variant_type = layer_type_map.get(type(module), None)
            if not expected_variant_type:
                continue

            assert isinstance(module.lora_variant["default"], expected_variant_type)

    def custom_model_with_loss_backpropagated(self, peft_config):
        """Returns the CustomModel + PEFT model instance with a dummy loss that was backpropagated once."""
        base_model = CustomModel()
        peft_model = get_peft_model(base_model, peft_config)

        x, y = torch.ones(10, 10).long(), torch.ones(10, 1, 10, 10)
        out = peft_model(x, y)
        loss = out.sum()
        loss.backward()

        return base_model, peft_model

    def test_dora_params_have_gradients(self):
        """Ensure that the parameters added by the DoRA variant are participating in the output computation."""
        layer_names = ["linear1", "linear2", "conv1d", "conv2d", "embedding"]
        peft_config = LoraConfig(target_modules=layer_names, use_dora=True)
        base_model, peft_model = self.custom_model_with_loss_backpropagated(peft_config)

        for layer in layer_names:
            assert getattr(peft_model.base_model.model, layer).lora_magnitude_vector["default"].weight.grad is not None


class TestActivatedLora:
    @pytest.mark.parametrize(
        "input_ids, alora_invocation_tokens, expected_offsets",
        [
            ([[0, 1, 2, 3], [0, 4, 5, 6]], [1, 2], [3, None]),
            ([[1, 2, 1, 2], [0, 4, 1, 2]], [1, 2], [2, 2]),
            ([[1, 2, 3, 4], [0, 4, 1, 4]], [1, 2], [4, None]),
            ([[1, 2, 3, 4]], None, [None]),
        ],
    )
    # Verify alora_offsets are calculated correctly
    def test_calculate_alora_offsets(self, input_ids, alora_invocation_tokens, expected_offsets):
        config = LoraConfig(alora_invocation_tokens=alora_invocation_tokens)
        peft_config = {"default": config}

        # compute offsets
        offsets = calculate_alora_offsets(peft_config, "default", torch.tensor(input_ids))

        assert offsets == expected_offsets

    @pytest.mark.parametrize(
        "input_ids, alora_invocations, expected_offsets",
        [
            ([[0, 1, 1], [0, 2, 2]], {"a1": [1], "a2": [2]}, [1, 1]),
            ([[0, 1, 1], [0, 2, 2]], {"a1": [1], "a2": None}, [1, None]),
        ],
    )
    # Verify alora_offsets are correct with adapter names
    def test_calculate_alora_offsets_with_adapter_names(self, input_ids, alora_invocations, expected_offsets):
        peft_config = {}
        for alora_name in alora_invocations.keys():
            peft_config[alora_name] = LoraConfig(alora_invocation_tokens=alora_invocations[alora_name])

        adapter_names = list(alora_invocations.keys())
        offsets = calculate_alora_offsets(
            peft_config, adapter_names[0], torch.tensor(input_ids), adapter_names=adapter_names
        )

        assert offsets == expected_offsets

    # Verify that the adapter does not modify outputs prior to invocation point
    def test_alora_activation_matches_base_until_invocation(self):
        transformers_class = MockTransformerWrapper
        base_model = transformers_class.from_pretrained()
        cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
        lora_model = get_peft_model(base_model, cfg)
        lora_model.eval()

        input_ids = torch.tensor([[0, 1, 2, 3]])
        start = 2
        with lora_model.disable_adapter():
            with torch.no_grad():
                base_out = lora_model(X=input_ids)

        kwargs = get_alora_offsets_for_forward(lora_model, input_ids)
        with torch.no_grad():
            lora_out = lora_model(X=input_ids, **kwargs)
        assert torch.allclose(lora_out[:, :start], base_out[:, :start])
        assert not torch.allclose(lora_out[:, start:], base_out[:, start:])

    # Verify that warning is given for alora when providing embeddings only
    def test_input_embeds_warning(self):
        transformers_class = MockTransformerWrapper
        base_model = transformers_class.from_pretrained()
        cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
        lora_model = get_peft_model(base_model, cfg)
        lora_model.eval()

        input_ids = torch.tensor([[0, 1, 2, 3]])
        input_embeds = base_model.embed(input_ids)
        with pytest.warns(
            UserWarning,
            match="Cannot calculate aLoRA offsets when only inputs_embeds are provided. Disabling aLoRA for this forward pass.",
        ):
            kwargs = get_alora_offsets_for_forward(lora_model, inputs_embeds=input_embeds)
        assert kwargs.get("alora_offsets") is None
        with pytest.warns(
            UserWarning,
            match="Cannot calculate aLoRA offsets during generate as input_ids are not available. Disabling aLoRA.",
        ):
            kwargs = get_alora_offsets_for_generate(lora_model, inputs_embeds=input_embeds)
        assert kwargs.get("alora_offsets") is None

    # Verify that error is raised when requesting num_beams > 1 for alora
    def test_num_beams_error(self):
        transformers_class = MockTransformerWrapper
        base_model = transformers_class.from_pretrained()
        cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
        lora_model = get_peft_model(base_model, cfg)
        lora_model.eval()

        input_ids = torch.tensor([[0, 1, 2, 3]])
        with pytest.raises(ValueError) as e:
            with torch.no_grad():
                lora_out = lora_model(X=input_ids, num_beams=2, alora_offsets=[3])
        assert "Beam search not yet supported for aLoRA." in str(e.value)