File size: 13,454 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This test file is for tests specific to RandLora, since Randlora has some specific challenges due to the shared weights.
# These tests are copied from the test_vera.py file

import os

import pytest
import torch
from accelerate.utils.imports import is_bf16_available
from safetensors import safe_open
from torch import nn

from peft import PeftModel, RandLoraConfig, get_peft_model


class MLP(nn.Module):
    def __init__(self, bias=True):
        super().__init__()
        self.relu = nn.ReLU()
        self.lin0 = nn.Linear(10, 20, bias=bias)
        self.lin1 = nn.Linear(20, 20, bias=bias)  # lin1 and lin2 have same shape
        self.lin2 = nn.Linear(20, 20, bias=bias)
        self.lin3 = nn.Linear(20, 2, bias=bias)
        self.sm = nn.LogSoftmax(dim=-1)

    def forward(self, X):
        X = self.lin0(X)
        X = self.relu(X)
        X = self.lin1(X)
        X = self.relu(X)
        X = self.lin2(X)
        X = self.relu(X)
        X = self.lin3(X)
        X = self.sm(X)
        return X


# Tests copied from the TestVera class in test_vera.py.
# Changes to the code file should be reflected here.
class TestRandLora:
    @pytest.fixture
    def mlp(self):
        torch.manual_seed(0)
        model = MLP()
        return model

    @pytest.fixture
    def mlp_same_prng(self, mlp):
        torch.manual_seed(0)

        config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False)
        # creates a default RandLora adapter
        peft_model = get_peft_model(mlp, config)
        config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False)
        peft_model.add_adapter("other", config2)
        return peft_model

    def test_multiple_adapters_same_prng_weights(self, mlp_same_prng):
        # we can have multiple adapters with the same prng key, in which case the weights should be shared
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_A["default"]
            is mlp_same_prng.base_model.model.lin1.randlora_A["other"]
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_B["default"]
            is mlp_same_prng.base_model.model.lin1.randlora_B["other"]
        )
        assert (
            mlp_same_prng.base_model.model.lin2.randlora_A["default"]
            is mlp_same_prng.base_model.model.lin2.randlora_A["other"]
        )
        assert (
            mlp_same_prng.base_model.model.lin2.randlora_B["default"]
            is mlp_same_prng.base_model.model.lin2.randlora_B["other"]
        )

        input = torch.randn(5, 10)
        mlp_same_prng.set_adapter("default")
        output_default = mlp_same_prng(input)
        mlp_same_prng.set_adapter("other")
        output_other = mlp_same_prng(input)
        assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3)

    def test_multiple_adapters_different_prng_raises(self):
        # we cannot have multiple adapters with different prng keys
        model = MLP()
        config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False)
        # creates a default RandLora adapter
        peft_model = get_peft_model(model, config)
        config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, projection_prng_key=123)

        msg = (
            r"RandLora PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key=123 but "
            r"previous config had 0"
        )
        with pytest.raises(ValueError, match=msg):
            peft_model.add_adapter("other", config2)

    def test_multiple_adapters_save_load_save_projection_true(self, mlp_same_prng, tmp_path):
        # check saving and loading works with multiple adapters and saved projection weights
        torch.manual_seed(0)
        input = torch.randn(5, 10)
        mlp_same_prng.set_adapter("default")
        output_default = mlp_same_prng(input)
        mlp_same_prng.set_adapter("other")
        output_other = mlp_same_prng(input)

        # sanity check
        assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3)

        save_path = tmp_path / "randlora"
        mlp_same_prng.save_pretrained(save_path)
        assert os.path.exists(save_path / "adapter_config.json")
        assert os.path.exists(save_path / "other" / "adapter_config.json")

        torch.manual_seed(0)
        mlp = MLP()
        peft_model = PeftModel.from_pretrained(mlp, save_path)
        peft_model.load_adapter(save_path / "other", "other")

        peft_model.set_adapter("default")
        output_default_loaded = peft_model(input)
        peft_model.set_adapter("other")
        output_other_loaded = peft_model(input)

        assert torch.allclose(output_default, output_default_loaded, atol=1e-3, rtol=1e-3)
        assert torch.allclose(output_other, output_other_loaded, atol=1e-3, rtol=1e-3)

    def test_multiple_adapters_save_load_save_projection_false(self, mlp, tmp_path):
        # check saving and loading works with multiple adapters without saved projection weights
        torch.manual_seed(1)
        config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False)
        # creates a default RandLora adapter
        peft_model = get_peft_model(mlp, config, adapter_name="first")
        config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False)
        peft_model.add_adapter("second", config2)

        input = torch.randn(5, 10)
        peft_model.set_adapter("first")
        output_first = peft_model(input)
        peft_model.set_adapter("second")
        output_second = peft_model(input)

        # sanity check
        assert not torch.allclose(output_first, output_second, atol=1e-3, rtol=1e-3)

        save_path = tmp_path / "randlora"
        peft_model.save_pretrained(save_path)
        assert os.path.exists(save_path / "first" / "adapter_config.json")
        assert os.path.exists(save_path / "second" / "adapter_config.json")

        torch.manual_seed(0)
        mlp = MLP()
        peft_model = PeftModel.from_pretrained(mlp, save_path / "first", adapter_name="first")
        peft_model.load_adapter(save_path / "second", "second")

        peft_model.set_adapter("first")
        output_first_loaded = peft_model(input)
        peft_model.set_adapter("second")
        output_second_loaded = peft_model(input)

        assert torch.allclose(output_first, output_first_loaded, atol=1e-3, rtol=1e-3)
        assert torch.allclose(output_second, output_second_loaded, atol=1e-3, rtol=1e-3)

    def test_multiple_adapters_save_projection_true_contains_randlora_A_randlora_B(self, mlp_same_prng, tmp_path):
        # check that the state_dicts don't contain the projection weights
        save_path = tmp_path / "randlora"
        mlp_same_prng.save_pretrained(save_path)

        sd_default = {}
        with safe_open(save_path / "adapter_model.safetensors", framework="pt", device="cpu") as f:
            for key in f.keys():
                sd_default[key] = f.get_tensor(key)

        assert any("randlora_A" in key for key in sd_default)
        assert any("randlora_B" in key for key in sd_default)
        # default rank for RandLora is 32
        assert sd_default["base_model.randlora_A"].shape == (32, 1, 20)
        assert sd_default["base_model.randlora_B"].shape == (20, 1, 32)

        sd_other = {}
        with safe_open(save_path / "other" / "adapter_model.safetensors", framework="pt", device="cpu") as f:
            for key in f.keys():
                sd_other[key] = f.get_tensor(key)

        assert any("randlora_A" in key for key in sd_other)
        assert any("randlora_B" in key for key in sd_other)
        assert sd_other["base_model.randlora_A"].shape == (32, 1, 20)
        assert sd_other["base_model.randlora_B"].shape == (20, 1, 32)

    def test_multiple_adapters_save_projection_false_contains_no_randlora_A_randlora_B(self, mlp, tmp_path):
        torch.manual_seed(1)
        config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False)
        # creates a default RandLora adapter
        peft_model = get_peft_model(mlp, config, adapter_name="first")
        config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False)
        peft_model.add_adapter("second", config2)

        save_path = tmp_path / "randlora"
        peft_model.save_pretrained(save_path)

        sd_default = {}
        with safe_open(save_path / "first" / "adapter_model.safetensors", framework="pt", device="cpu") as f:
            for key in f.keys():
                sd_default[key] = f.get_tensor(key)

        assert not any("randlora_A" in key for key in sd_default)
        assert not any("randlora_B" in key for key in sd_default)

        sd_other = {}
        with safe_open(save_path / "second" / "adapter_model.safetensors", framework="pt", device="cpu") as f:
            for key in f.keys():
                sd_other[key] = f.get_tensor(key)

        assert not any("randlora_A" in key for key in sd_other)
        assert not any("randlora_B" in key for key in sd_other)

    def test_randlora_A_randlora_B_share_memory(self, mlp_same_prng):
        randlora_A = mlp_same_prng.randlora_A["default"]
        randlora_B = mlp_same_prng.randlora_B["default"]

        # these tensors should share the same data
        assert randlora_A.data_ptr() == mlp_same_prng.base_model.model.lin1.randlora_A["default"].data_ptr()
        assert randlora_B.data_ptr() == mlp_same_prng.base_model.model.lin1.randlora_B["default"].data_ptr()
        assert randlora_A.data_ptr() == mlp_same_prng.base_model.model.lin2.randlora_A["default"].data_ptr()
        assert randlora_B.data_ptr() == mlp_same_prng.base_model.model.lin2.randlora_B["default"].data_ptr()
        # sanity check: these tensors shouldn't share the same data
        assert randlora_A.data_ptr() != randlora_B.data_ptr()

    def test_randlora_lambda_dont_share_memory(self, mlp_same_prng):
        # sanity check: these tensors shouldn't share the same data
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_lambda["default"].data_ptr()
            != mlp_same_prng.base_model.model.lin1.randlora_lambda["other"].data_ptr()
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_lambda["default"].data_ptr()
            != mlp_same_prng.base_model.model.lin2.randlora_lambda["default"].data_ptr()
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_lambda["other"].data_ptr()
            != mlp_same_prng.base_model.model.lin2.randlora_lambda["other"].data_ptr()
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_gamma["default"].data_ptr()
            != mlp_same_prng.base_model.model.lin1.randlora_gamma["other"].data_ptr()
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_gamma["default"].data_ptr()
            != mlp_same_prng.base_model.model.lin2.randlora_gamma["default"].data_ptr()
        )
        assert (
            mlp_same_prng.base_model.model.lin1.randlora_gamma["other"].data_ptr()
            != mlp_same_prng.base_model.model.lin2.randlora_gamma["other"].data_ptr()
        )

    def test_randlora_different_shapes(self, mlp):
        config = RandLoraConfig(target_modules=["lin0", "lin3"], init_weights=False)
        mlp_different_shapes = get_peft_model(mlp, config)

        randlora_A = mlp_different_shapes.randlora_A["default"]
        randlora_B = mlp_different_shapes.randlora_B["default"]

        # sanity check
        assert mlp.lin0.base_layer.weight.shape != mlp.lin3.base_layer.weight.shape

        # lin0 has the largest output dimension, lin3 has the largest input dimension
        # randlora_A should have the shape of (rank, largest_in), randlora_B should have the shape of (largest_out, rank)
        assert randlora_A.shape == (config.r, 1, mlp.lin3.in_features)
        assert randlora_B.shape == (mlp.lin0.out_features, 1, config.r)

        # should not raise
        input = torch.randn(5, 10)
        mlp_different_shapes(input)

    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
    def test_randlora_dtypes(self, dtype):
        if dtype == torch.bfloat16:
            # skip if bf16 is not supported on hardware, see #1872
            if not is_bf16_available():
                pytest.skip("bfloat16 not supported on this system, skipping the test")

        model = MLP().to(dtype)
        config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False)
        peft_model = get_peft_model(model, config)
        inputs = torch.randn(5, 10).to(dtype)
        output = peft_model(inputs)  # should not raise
        assert output.dtype == dtype