|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
from typing import Optional, Union |
|
|
|
|
|
import torch |
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor |
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
from diffusers.models.unets.unet_2d_blocks import ( |
|
|
CrossAttnDownBlock2D, |
|
|
DownBlock2D, |
|
|
) |
|
|
from diffusers.utils import BaseOutput, logging |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ControlNetOutput(BaseOutput): |
|
|
down_block_res_samples: tuple[torch.Tensor] |
|
|
mid_block_res_sample: torch.Tensor |
|
|
|
|
|
|
|
|
class ControlNetConditioningEmbedding(nn.Module): |
|
|
""" |
|
|
Quoting from https://huggingface.co/papers/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN |
|
|
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized |
|
|
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the |
|
|
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides |
|
|
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full |
|
|
model) to encode image-space conditions ... into feature maps ..." |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
conditioning_embedding_channels: int, |
|
|
conditioning_channels: int = 3, |
|
|
block_out_channels: tuple[int] = (16, 32, 96, 256), |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) |
|
|
|
|
|
self.blocks = nn.ModuleList([]) |
|
|
|
|
|
for i in range(len(block_out_channels) - 1): |
|
|
channel_in = block_out_channels[i] |
|
|
channel_out = block_out_channels[i + 1] |
|
|
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) |
|
|
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) |
|
|
|
|
|
self.conv_out = zero_module( |
|
|
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) |
|
|
) |
|
|
|
|
|
def forward(self, conditioning): |
|
|
embedding = self.conv_in(conditioning) |
|
|
embedding = F.silu(embedding) |
|
|
|
|
|
for block in self.blocks: |
|
|
embedding = block(embedding) |
|
|
embedding = F.silu(embedding) |
|
|
|
|
|
embedding = self.conv_out(embedding) |
|
|
|
|
|
return embedding |
|
|
|
|
|
|
|
|
class ControlNetModel(ModelMixin, ConfigMixin): |
|
|
_supports_gradient_checkpointing = True |
|
|
|
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int = 4, |
|
|
out_channels: int = 320, |
|
|
controlnet_conditioning_channel_order: str = "rgb", |
|
|
conditioning_embedding_out_channels: Optional[tuple[int]] = (16, 32, 96, 256), |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.controlnet_cond_embedding = ControlNetConditioningEmbedding( |
|
|
conditioning_embedding_channels=out_channels, |
|
|
block_out_channels=conditioning_embedding_out_channels, |
|
|
) |
|
|
|
|
|
@property |
|
|
|
|
|
def attn_processors(self) -> dict[str, AttentionProcessor]: |
|
|
r""" |
|
|
Returns: |
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
|
indexed by its weight name. |
|
|
""" |
|
|
|
|
|
processors = {} |
|
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: dict[str, AttentionProcessor]): |
|
|
if hasattr(module, "set_processor"): |
|
|
processors[f"{name}.processor"] = module.processor |
|
|
|
|
|
for sub_name, child in module.named_children(): |
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
|
|
return processors |
|
|
|
|
|
for name, module in self.named_children(): |
|
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
|
|
return processors |
|
|
|
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, dict[str, AttentionProcessor]]): |
|
|
r""" |
|
|
Parameters: |
|
|
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): |
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
|
of **all** `Attention` layers. |
|
|
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: |
|
|
|
|
|
""" |
|
|
count = len(self.attn_processors.keys()) |
|
|
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
|
raise ValueError( |
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
|
) |
|
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
|
if hasattr(module, "set_processor"): |
|
|
if not isinstance(processor, dict): |
|
|
module.set_processor(processor) |
|
|
else: |
|
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
|
|
for sub_name, child in module.named_children(): |
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
|
|
for name, module in self.named_children(): |
|
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
|
|
|
def set_default_attn_processor(self): |
|
|
""" |
|
|
Disables custom attention processors and sets the default attention implementation. |
|
|
""" |
|
|
self.set_attn_processor(AttnProcessor()) |
|
|
|
|
|
|
|
|
def set_attention_slice(self, slice_size): |
|
|
r""" |
|
|
Enable sliced attention computation. |
|
|
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
|
|
Args: |
|
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
|
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is |
|
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
|
must be a multiple of `slice_size`. |
|
|
""" |
|
|
sliceable_head_dims = [] |
|
|
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
|
if hasattr(module, "set_attention_slice"): |
|
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
|
|
for child in module.children(): |
|
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
|
|
|
for module in self.children(): |
|
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
|
|
if slice_size == "auto": |
|
|
|
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
|
elif slice_size == "max": |
|
|
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
|
|
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size |
|
|
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
|
raise ValueError( |
|
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
|
) |
|
|
|
|
|
for i in range(len(slice_size)): |
|
|
size = slice_size[i] |
|
|
dim = sliceable_head_dims[i] |
|
|
if size is not None and size > dim: |
|
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: list[int]): |
|
|
if hasattr(module, "set_attention_slice"): |
|
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
|
|
for child in module.children(): |
|
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
|
for module in self.children(): |
|
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
|
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): |
|
|
module.gradient_checkpointing = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
controlnet_cond: torch.FloatTensor, |
|
|
) -> Union[ControlNetOutput, tuple]: |
|
|
|
|
|
channel_order = self.config.controlnet_conditioning_channel_order |
|
|
|
|
|
if channel_order == "rgb": |
|
|
|
|
|
... |
|
|
elif channel_order == "bgr": |
|
|
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) |
|
|
else: |
|
|
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") |
|
|
|
|
|
|
|
|
|
|
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) |
|
|
|
|
|
return controlnet_cond |
|
|
|
|
|
|
|
|
def zero_module(module): |
|
|
for p in module.parameters(): |
|
|
nn.init.zeros_(p) |
|
|
return module |
|
|
|