|
|
import argparse |
|
|
import os |
|
|
import warnings |
|
|
from typing import Optional |
|
|
|
|
|
from huggingface_hub import HfFolder, whoami |
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder", |
|
|
revision=revision, |
|
|
) |
|
|
model_class = text_encoder_config.architectures[0] |
|
|
|
|
|
if model_class == "CLIPTextModel": |
|
|
from transformers import CLIPTextModel |
|
|
|
|
|
return CLIPTextModel |
|
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
|
|
return RobertaSeriesModelWithTransformation |
|
|
else: |
|
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
|
if token is None: |
|
|
token = HfFolder.get_token() |
|
|
if organization is None: |
|
|
username = whoami(token)["name"] |
|
|
return f"{username}/{model_id}" |
|
|
else: |
|
|
return f"{organization}/{model_id}" |
|
|
|
|
|
|
|
|
def parse_args(input_args=None): |
|
|
parser = argparse.ArgumentParser(description="Simple example of a Dreambooth training script.") |
|
|
parser.add_argument( |
|
|
"--pretrained_model_name_or_path", |
|
|
type=str, |
|
|
default=None, |
|
|
required=True, |
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--revision", |
|
|
type=str, |
|
|
default=None, |
|
|
required=False, |
|
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--tokenizer_name", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--instance_data_dir", |
|
|
type=str, |
|
|
default=None, |
|
|
required=True, |
|
|
help="A folder containing the training data of instance images.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--class_data_dir", |
|
|
type=str, |
|
|
default=None, |
|
|
required=False, |
|
|
help="A folder containing the training data of class images.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--instance_prompt", |
|
|
type=str, |
|
|
default=None, |
|
|
required=True, |
|
|
help="The prompt with identifier specifying the instance", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--class_prompt", |
|
|
type=str, |
|
|
default=None, |
|
|
help="The prompt to specify images in the same class as provided instance images.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--with_prior_preservation", |
|
|
default=False, |
|
|
action="store_true", |
|
|
help="Flag to add prior preservation loss.", |
|
|
) |
|
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
|
parser.add_argument( |
|
|
"--num_class_images", |
|
|
type=int, |
|
|
default=100, |
|
|
help=( |
|
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--validation_prompt", |
|
|
nargs="+", |
|
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--num_validation_images", |
|
|
type=int, |
|
|
default=4, |
|
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--validation_steps", |
|
|
type=int, |
|
|
default=500, |
|
|
help=( |
|
|
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" |
|
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output_dir", |
|
|
type=str, |
|
|
default="text-inversion-model", |
|
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
|
) |
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
|
parser.add_argument( |
|
|
"--resolution", |
|
|
type=int, |
|
|
default=512, |
|
|
help=( |
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
|
" resolution" |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" |
|
|
) |
|
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") |
|
|
|
|
|
parser.add_argument( |
|
|
"--set_grads_to_none", |
|
|
action="store_true", |
|
|
help=( |
|
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
|
), |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument("--use_boft", action="store_true", help="Whether to use BOFT for parameter efficient tuning") |
|
|
parser.add_argument("--boft_block_num", type=int, default=4, help="The number of BOFT blocks") |
|
|
parser.add_argument("--boft_block_size", type=int, default=0, help="The size of BOFT blocks") |
|
|
parser.add_argument("--boft_n_butterfly_factor", type=int, default=2, help="The number of butterfly factors") |
|
|
parser.add_argument("--boft_dropout", type=float, default=0.1, help="BOFT dropout, only used if use_boft is True") |
|
|
parser.add_argument( |
|
|
"--boft_bias", |
|
|
type=str, |
|
|
default="none", |
|
|
help="Bias type for BOFT. Can be 'none', 'all' or 'boft_only', only used if use_boft is True", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--num_dataloader_workers", type=int, default=1, help="Num of workers for the training dataloader." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--no_tracemalloc", |
|
|
default=False, |
|
|
action="store_true", |
|
|
help="Flag to stop memory allocation tracing during training. This could speed up training on Windows.", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
|
) |
|
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
|
parser.add_argument( |
|
|
"--max_train_steps", |
|
|
type=int, |
|
|
default=None, |
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--checkpointing_steps", |
|
|
type=int, |
|
|
default=500, |
|
|
help=( |
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
|
" training using `--resume_from_checkpoint`." |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--resume_from_checkpoint", |
|
|
type=str, |
|
|
default=None, |
|
|
help=( |
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gradient_accumulation_steps", |
|
|
type=int, |
|
|
default=1, |
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gradient_checkpointing", |
|
|
action="store_true", |
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--learning_rate", |
|
|
type=float, |
|
|
default=5e-6, |
|
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--scale_lr", |
|
|
action="store_true", |
|
|
default=False, |
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--lr_scheduler", |
|
|
type=str, |
|
|
default="constant", |
|
|
help=( |
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
|
' "constant", "constant_with_warmup"]' |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--lr_num_cycles", |
|
|
type=int, |
|
|
default=1, |
|
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
|
) |
|
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
|
parser.add_argument( |
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
|
) |
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
|
parser.add_argument( |
|
|
"--hub_model_id", |
|
|
type=str, |
|
|
default=None, |
|
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--logging_dir", |
|
|
type=str, |
|
|
default="logs", |
|
|
help=( |
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--allow_tf32", |
|
|
action="store_true", |
|
|
help=( |
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--report_to", |
|
|
type=str, |
|
|
default="wandb", |
|
|
help=( |
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--wandb_key", |
|
|
type=str, |
|
|
default=None, |
|
|
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--wandb_project_name", |
|
|
type=str, |
|
|
default=None, |
|
|
help=("If report to option is set to wandb, project name in wandb for log tracking "), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--wandb_run_name", |
|
|
type=str, |
|
|
default=None, |
|
|
help=("If report to option is set to wandb, project name in wandb for log tracking "), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--mixed_precision", |
|
|
type=str, |
|
|
default=None, |
|
|
choices=["no", "fp16", "bf16"], |
|
|
help=( |
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
|
), |
|
|
) |
|
|
parser.add_argument( |
|
|
"--prior_generation_precision", |
|
|
type=str, |
|
|
default=None, |
|
|
choices=["no", "fp32", "fp16", "bf16"], |
|
|
help=( |
|
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
|
), |
|
|
) |
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
parser.add_argument( |
|
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
|
) |
|
|
|
|
|
if input_args is not None: |
|
|
args = parser.parse_args(input_args) |
|
|
else: |
|
|
args = parser.parse_args() |
|
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
|
args.local_rank = env_local_rank |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
|
if args.class_data_dir is None: |
|
|
raise ValueError("You must specify a data directory for class images.") |
|
|
if args.class_prompt is None: |
|
|
raise ValueError("You must specify prompt for class images.") |
|
|
else: |
|
|
|
|
|
if args.class_data_dir is not None: |
|
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") |
|
|
if args.class_prompt is not None: |
|
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
|
|
return args |
|
|
|