Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from transformers import AutoTokenizer
class TokenizerMetaMath:
PROMPT_NO_INPUT = (
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{query}\n\n### Response: "
)
PROMPT = (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{query}\n\n### Input:\n{input}\n\n### Response: "
)
def format_prompt(self, query):
query = query.split("\n", 1)
if len(query) == 1 or query[1].strip("\n") == "":
return self.PROMPT_NO_INPUT.format(query=query[0])
else:
return self.PROMPT.format(query=query[0], input=query[1])
def __init__(self, tokenizer_path):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
def __call__(self, examples):
prompts = [self.format_prompt(text) for text in examples["query"]]
completions = examples["response"]
return self._tokenize_fn(prompts, completions)
def _tokenize_fn(self, prompts, completions):
prompt_tokens = self.tokenizer(prompts, add_special_tokens=False)["input_ids"]
input_tokens = self.tokenizer([x + y for x, y in zip(prompts, completions)], add_special_tokens=False)[
"input_ids"
]
input_tokens = [[self.tokenizer.bos_token_id] + x + [self.tokenizer.eos_token_id] for x in input_tokens]
prompt_length = [len(x) + 1 for x in prompt_tokens] # +1 for the bos token
input_length = [len(x) for x in input_tokens]
return {"input_ids": input_tokens, "prompt_length": prompt_length, "input_length": input_length}
class DataCollator:
def __init__(self, eos_token_id, max_length=None):
self.eos_token_id = eos_token_id
self.max_length = max_length
def __call__(self, batch):
batch = {k: [item[k] for item in batch] for k in batch[0]}
input_lengths = torch.stack(batch["input_length"])
prompt_lengths = torch.stack(batch["prompt_length"])
input_ids = torch.nn.utils.rnn.pad_sequence(
batch["input_ids"], batch_first=True, padding_value=self.eos_token_id
)
col_indices = torch.arange(input_ids.size(1)).unsqueeze(0)
attention_mask = col_indices < input_lengths.unsqueeze(1)
label_mask = torch.logical_or(col_indices < prompt_lengths.unsqueeze(1), ~attention_mask)
labels = input_ids.masked_fill(label_mask, -100)
if self.max_length is not None:
input_ids = input_ids[:, : self.max_length]
attention_mask = attention_mask[:, : self.max_length]
labels = labels[:, : self.max_length]
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}