|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
from dataclasses import dataclass, field |
|
|
from typing import Literal, Optional |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser |
|
|
from trl import SFTConfig, SFTTrainer |
|
|
|
|
|
from peft import MissConfig, get_peft_model |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ScriptArguments(SFTConfig): |
|
|
|
|
|
base_model_name_or_path: Optional[str] = field( |
|
|
default=None, metadata={"help": "The name or path of the fp32/16 base model."} |
|
|
) |
|
|
bits: str = field(default="bf16", metadata={"help": "(`['bf16', 'fp16', fp32]`)"}) |
|
|
init_weights: Literal[True, "bat"] = field( |
|
|
default=True, |
|
|
metadata={ |
|
|
"help": ( |
|
|
"True -> MiSS efficience and balance; `bat` -> Bat, `mini` -> smaller MiSS efficience and balance" |
|
|
), |
|
|
}, |
|
|
) |
|
|
miss_r: int = field(default=16) |
|
|
merge_and_save: bool = field(default=False) |
|
|
|
|
|
data_path: str = field(default="imdb", metadata={"help": "Path to the training data."}) |
|
|
dataset_split: str = field(default="train[:1%]", metadata={"help": "(`['train', 'test', 'eval']`):"}) |
|
|
dataset_field: list[str] = field(default=None, metadata={"help": "Fields of dataset input and output."}) |
|
|
|
|
|
|
|
|
parser = HfArgumentParser(ScriptArguments) |
|
|
script_args = parser.parse_args_into_dataclasses()[0] |
|
|
print(script_args) |
|
|
|
|
|
print(f"Load pre-processed residual model in {script_args.bits} bits.") |
|
|
if script_args.bits in ["nf4", "fp4", "int8"]: |
|
|
print("MiSS currently does not support quantization.") |
|
|
|
|
|
elif script_args.base_model_name_or_path is not None: |
|
|
print(f"No available pre-processed model, manually initialize a MiSS using {script_args.base_model_name_or_path}.") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
script_args.base_model_name_or_path, |
|
|
torch_dtype=( |
|
|
torch.float16 |
|
|
if script_args.bits == "fp16" |
|
|
else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32) |
|
|
), |
|
|
device_map="auto", |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path) |
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
miss_config = MissConfig( |
|
|
r=script_args.miss_r, |
|
|
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], |
|
|
bias="none", |
|
|
task_type="CAUSAL_LM", |
|
|
init_weights=script_args.init_weights, |
|
|
) |
|
|
peft_model = get_peft_model(model, miss_config) |
|
|
|
|
|
print(peft_model) |
|
|
peft_model.print_trainable_parameters() |
|
|
|
|
|
print(f"Training MiSS with trl on the {script_args.data_path}[{script_args.dataset_split}] dataset.") |
|
|
dataset = load_dataset(script_args.data_path, split=script_args.dataset_split) |
|
|
dataset = dataset.map( |
|
|
lambda example: { |
|
|
"text": f"### USER: {example[script_args.dataset_field[0]]}\n### ASSISTANT: {example[script_args.dataset_field[1]]}" |
|
|
} |
|
|
) |
|
|
|
|
|
trainer = SFTTrainer( |
|
|
model=peft_model, |
|
|
args=script_args, |
|
|
train_dataset=dataset, |
|
|
processing_class=tokenizer, |
|
|
) |
|
|
trainer.train() |
|
|
trainer.save_state() |
|
|
|
|
|
peft_model.save_pretrained( |
|
|
os.path.join(script_args.output_dir, "miss_ft"), |
|
|
) |
|
|
|
|
|
if script_args.merge_and_save: |
|
|
model = peft_model.merge_and_unload() |
|
|
model.save_pretrained(os.path.join(script_args.output_dir, "miss_merged")) |
|
|
tokenizer.save_pretrained(os.path.join(script_args.output_dir, "miss_merged")) |
|
|
|